
ACAI: Protecting Accelerator Execution
with Arm Confidential Computing Architecture

Supraja Sridhara Andrin Bertschi Benedict Schlüter Mark Kuhne Fabio Aliberti Shweta Shinde
ETH Zurich

Abstract
Trusted execution environments in several existing and

upcoming CPUs demonstrate the success of confidential com-
puting, with the caveat that tenants cannot securely use accel-
erators such as GPUs and FPGAs. In this paper, we reconsider
the Arm Confidential Computing Architecture (CCA) design,
an upcoming TEE feature in Armv9-A, to address this gap.
We observe that CCA offers the right abstraction and mecha-
nisms to allow confidential VMs to use accelerators as a first-
class abstraction. We build ACAI, a CCA-based solution, with
a principled approach of extending CCA security invariants
to device-side access to address several critical security gaps.
Our experimental results on GPU and FPGA demonstrate the
feasibility of ACAI while maintaining security guarantees.

1 Introduction

Confidential computing allows cloud users to deploy security-
sensitive applications on an untrusted cloud provider’s plat-
form. The trusted hardware provisioned in the cloud guaran-
tees that the user’s code and data are protected from malicious
tenants as well as privileged administrators. While some hard-
ware support for enabling trusted execution environments,
such as enclaves in Intel SGX, is limited to process-level
abstractions, there has been an increasing shift towards VM-
level isolation of confidential VMs [1, 5, 31]. Another notice-
able shift, especially in the cloud setting, is towards using
accelerators (e.g., GPUs, FPGAs, TPUs) to meet the demands
of large workloads [12, 50]. However, trusted execution on
CPUs does not extend to accelerators. This leaves cloud users
with a dilemma: render the workloads open to attacks by exe-
cuting them outside the trusted execution boundary or take a
performance hit by executing these workloads on CPUs.

Arm announced specification to enable confidential com-
puting architecture, Arm CCA for short, in 2021 [5]. CCA iso-
lates confidential VMs, referred to as realm VMs, from each
other and the hypervisor with hardware-level access control

1Extended version of the Usenix Security 2024 paper.

via a newly introduced mechanism called granule protection
checks. More importantly, these checks extend beyond the
CPU cores to bus transactions as well as address translation
for I/O operations, thus allowing CCA-enabled peripherals
to securely access VMs. Further, CCA’s VM abstraction is
a good fit for the cloud setting that reasons about VMs and
accelerators at a coarse granularity. For example, a P3 or F1
instance is provisioned as a bundle of a VM with a dedicated
GPU or an FPGA respectively. Moreover, the accelerators are
connected as PCIe devices. This is unlike mobile or desktops
with integrated accelerators which are used intermittently by
the applications (e.g., a browser renders a GUI with a GPU
which is then used by a game app).

At the outset, accelerating confidential computing may
seem trivial; especially in cases where accelerators, such as a
GPU, have device-level TEEs. Accelerators require hardware
modifications to enable TEE operations, which requires re-
designing the device operations without loss of performance
and increase in area size, as showcased with recent Nvidia
GPUs [42]. Despite these hardware changes, we observe two
main challenges remain. First, the accelerators cannot reason
about the security of the host device, such as the authenticity
of a realm VM, it connects to. Second, on the CPU side, the
TEEs have to account for secure device access. The realm
VMs have to be protected from rogue devices as well as de-
vices controlled by co-tenant VMs. Achieving end-to-end
secure accelerator execution requires addressing these gaps.

In this paper, we reconsider Arm CCA VMs with the goal
of making access to accelerator devices a first-class primitive.
Our choice of Arm CCA is inspired partly because it is an
upcoming extension, unlike AMD SEV and Intel TDX which
are already in production. The ability to experiment with
CCA on Arm’s Fixed Virtual Platform allows us to showcase
the design choices and reason about its security transparently.
CCA’s native support for bus-level access control and memory
protection allows us to re-purpose existing hardware protec-
tion mechanisms to our setting of PCIe peripherals. To this
end we present ACAI, a CCA-based design that enables realm
VMs to securely access accelerators.

1

ar
X

iv
:2

30
5.

15
98

6v
2

 [
cs

.C
R

]
 2

5
O

ct
 2

02
3

Enabling ACAI requires careful consideration of security
and compatibility implications. In the existing CCA speci-
fication, external accelerators connected over PCIe can be
allowed to access realm memory. If allowed to do so, such
accelerators can break CCA protection that requires system-
atic enforcement of granule protection checks. Next, ACAI
has to ensure that accesses from different accelerators are
isolated to their designated share connected to the appropri-
ate VM while thwarting accesses from malicious peripherals.
Further, ACAI has to isolate all possible I/O and memory ac-
cess paths, DMA and memory-mapped IO, from software and
physical adversaries. Specifically, the hypervisor can manipu-
late the hardware I/O subsystem and a physical adversary can
snoop and tamper the PCIe communication to bypass CPU
and device TEE protections. Lastly, ACAI has to maintain
compatibility i.e., incur minimal changes to the trusted RMM,
monitor and guest Linux kernel as well as the untrusted hy-
pervisor; especially while retrofitting software stacks written
with a hierarchical trust model to trusted execution model.

Our main insight is to extend Arm CCA’s security invariants
for CPU-side protection to reason about devices. When a CPU
core accesses a memory address, CCA checks if the CPU’s
execution mode is allowed to access the mode of the memory
being accessed, thus protecting the realm from privileged soft-
ware adversaries (OS and Hypervisor). ACAI enables a device
to be securely marked as realm-mode, to leverage world-level
isolation. CCA further isolates realm memory between VMs
by using the MMU controlled by trusted software. ACAI uses
a device-side MMU, called the SMMU, to similarly achieve
VM-level isolation but from device accesses. While doing so,
ACAI ensures that an untrusted hypervisor who can program
the SMMU cannot tamper with the isolation guarantees. CCA
employs bus-level memory encryption to protect VMs from
physical adversaries, ACAI re-uses native hardware-level en-
cryption support from PCIe and the device-side TEE to protect
device-bound communication. CCA binds the VM’s identity
and encryption keys to the attestation report. ACAI includes
the device attestation in the VM creation flow to addition-
ally bind the device identity to the realm VM. In summary,
ACAI invariants allow us to systematically reason about the
confidentiality and integrity of the VM and device execution.

We prototype ACAI on Arm’s public simulator that sup-
ports CCA. Arm provides a trusted firmware called TF-A and
a trusted hypervisor called realm management monitor, along
with an untrusted hypervisor in the form of a patched KVM.
ACAI modifies these three components to enable secure accel-
erator execution. Arm provides a patched Linux Kernel that
can execute both in the realm VM as well as the untrusted
host VM. For compatibility, ACAI adapts the kernel and ex-
isting device drivers such that confidential user applications
can continue to access the accelerators as they would in a
legacy setting. We showcase ACAI with two existing accel-
erators, a GPU and an FPGA. Our experiments with existing
benchmarks and applications show that ACAI supports accel-

erators out of the box, while maintaining compatibility with
existing applications. When compared to execution without
TEE protection on the CPU and the accelerator, ACAI incurs
43.5% and 12.1% overhead on average for GPUs and FP-
GAs respectively. We confirm that ACAI does not slow down
the execution of the rest of the system, it incurs a minimal
overhead of 3.8% and 1.9% when using the GPU and FPGA.
Since CCA support is not available in CPUs, our performance
estimates are based on a simulator and an Armv8 board port.
Contributions. The main contributions of this paper are:

• We present ACAI, the first system to demonstrate secure
PCIe device access for Arm CCA-based confidential VMs.

• ACAI’s novel security invariants identify security gaps in
Arm CCA and achieve secure peripheral execution without
any hardware changes to the Arm CCA-compliant hardware
or TEE-enabled accelerators.

• Our evaluation shows that ACAI is feasible while achieving
its security and compatibility goals. ACAI is open source.2

2 Confidential Acceleration

CCA considers all memory accesses from devices to be un-
trusted by default, thus preventing them from accessing realm
memory of confidential VMs. Similarly, TEE architectures
such as Intel SGX and AMD SEV do not allow devices to
access protected enclave and confidential VM memory.
Encrypted Access to PCIe-based Accelerators. Most cloud
deployments use PCIe to connect powerful CPU cores to ded-
icated accelerators. This offers the flexibility to plug in the
best-suited devices after procurement as well as the scalability
to connect 16-64 devices per node. The bus-level access con-
trol mechanisms, such as Arm TrustZone or RISC-V PMP, do
not extend to such devices. Instead, existing proposals resort
to a bounce-buffer design for encrypted communication. The
VM encrypts the data buffer in software and sends it to the
accelerator, which decrypts it using accelerator-specific logic
(e.g., GPU kernel). Similarly, the accelerator generates results,
encrypts them, and transfers them to the publicly accessible
part of the CPU memory. Subsequently, the VM has to copy
the encrypted data into its own protected memory and then
decrypt it. As shown in Table 1 and Figure 1(b), this approach
leads to two extra copies and software-based encryption and
integrity protection on both the processors and peripherals
thus increasing the memory and compute overheads. This
requires invasive API changes in the applications, drivers to
perform encryption, and the device-side logic for encryption;
thus breaking compatibility. Case in point, connecting Nvidia
GPUs to AMD SEV VMs required cooperation from Nvidia,
AMD, and Azure while still achieving 4Gbps bandwidth due
to software encryption and memory copy bottlenecks [42].

2https://sectrs-acai.github.io/acai/

2

https://sectrs-acai.github.io/acai/

Normal-world

MPE

GPC

Core1

Read from DRAM

interconnect

Realm

GPC

1

1

GPC

Normal-world Realm

DMA read

interconnect

MPE

PCIe

Core1

GPU

12

2
2 1

2

34 GPC

Normal-world Realm

DMA read

interconnect

MPE

PCIe

Core1

GPU

1

1

1

2

Protected 1

(a) (b) (c)

Figure 1: Access Modes: (a) Integrated (b) Encrypted (c) ACAI. The white numbered boxes indicate the original data to be sent
to the device, the concentric squares indicate encryption by the CPU bus (orange), software (blue), and PCIe bus (yellow).

Table 1: Number of data copies and encryption-decryption op-
erations in hardware (EncHW) and software (EncSW) required
per transaction between the CPU and the device.

Bounce Buffer ACAI
Copies EncSW EncHW Copies EncSW EncHW

3 2 2 1 0 2

The PCIe-5 specification introduces IDE (Integrity and
Data encryption) which provides confidentiality and integrity
guarantees for PCIe packets [46]. IDE’s hardware encryption
feature can be leveraged to build a performant design without
the need for software-based encryption. However, IDE is not
designed for a threat model with an untrusted hypervisor.
Protected Access to Integrated Accelerators. In Arm ar-
chitecture, accelerator IPs can be embedded as part of the
SoC. Such integrated devices do not have their own main
memory; instead, they access the main memory along with
the CPU cores. Most popular examples are Mali and Immor-
talis GPUs, and Mali NPUs. Since these components operate
over a shared bus that connects to main memory, an access
control mechanism that operates at bus-level for CPU isola-
tion can be applied to integrated accelerators as well. This
approach has been previously applied to RISC-V [10, 48] and
Arm TrustZone [20]. The success of this approach relies on
two requirements—all device accesses strictly pass through
the bus and the device enforces its own access control—that
render the device access to be equivalent to a CPU core access
for all purposes.

In the context of CCA, a CPU core is allowed to access
realm memory if it has the right privileges. Specifically, each
core can program the access mode (root/realm/secure/normal)
for physical address ranges. The architecture introduces a spe-
cial data structure, called granule protection table (GPT), to
track these access modes. The GPT resides in the root mode
memory and can only be accessed by the monitor. The archi-

tecture then converts the GPT restrictions into access checks
via granule protection checks (GPCs). The GPCs can then be
applied to components, such as CPU cores, caches, TLBs, and
SMMU, that access the memory. Whenever there is a change
in the GPT, the GPCs are synchronized and may trigger the
flushing of stale states. Lastly, a physical attacker cannot tam-
per with the data on the main memory because of bus-level
encryption and integrity protection mechanisms. To allow
devices to access realm memory, CCA necessitates that the
device implements a device-side GPC, such that any accesses
coming from the device is filtered as per the GPT before it
is allowed to propagate on the bus. Figure 1(a) summarizes
this mode and Table 1 shows that the overheads for this mode
are minimal—there are no data copies and the encryption is
performed transparently and is at line-rate.

3 Background: Isolation in Arm CCA

Arm Confidential Computing Architecture (CCA) enables the
creation of VM-based isolated execution environments. CCA
is enabled by a hardware extension to the Arm ISA, Realm
Management Extensions (RME), that creates 2 new worlds
(Realm and Root) along with the 2 existing worlds (Normal
and Secure). Figure 2 shows how the schematic of exception
levels and worlds works when CCA-based VMs are executing.
On a CCA-enabled platform, a CPU core is allowed to access
realm memory if it is in the right privilege and mode. Specif-
ically, each core can program the access mode of physical
address ranges to be root, realm, secure, or normal world. The
architecture introduces a special data structure, called granule
protection table (GPT) that tracks which physical address
belongs to which of the four worlds. To perform the world
isolation, CCA augments all processing elements (e.g., Arm
cores, SMMU, caches, TLBs) with Granule Protection Checks
(GPCs), where a Granule is the smallest block of memory
that can be described. The GPTs are maintained in the main

3

Memory Protection Engine

Coherent Interconnect

SMMU

PCIe
Device

L3

L1-I

L1-D

L2

TLB

MMU

GPCCo
re

 1

GPC

Interconnect

System Cache

Memory Controller

L1-I

L1-D

L2

TLB

MMU

GPCCo
re

 2

RMM

Realm
VM 1

VM 1

Hyper
visor

Realm
World

Normal
World

Monitor

Root World

EL0

EL1

EL2

EL3

RSI

SMC SMC

RMI

Figure 2: GPC in Arm CCA. Blue components are subject to
GPC enforcement. The right figure shows interfaces between
the realm VM, RMM, hypervisor, and monitor. Realm service
interface (RSI) and realm management interface (RMI) are
used by the Realm VM and hypervisor respectively.

memory and belong to the root world such that only the mon-
itor can access and update them. Whenever there is a change
in the GPT, the GPCs are synchronized and may trigger the
flushing of stale states. The GPCs, generated from the GPTs,
effectively prevent accesses from the normal or secure world
to the realm memory by performing access control on all
memory accesses. Specifically, all bus transactions initiated
from the core are guarded. The trusted firmware, executing in
the monitor, sets the world bit for the core when it performs
a context switch. Next, a trusted Realm Management Moni-
tor (RMM) executes in the realm world at EL2. The RMM
ensures that mutually distrusting realm VMs are isolated by
managing stage-2 translations from guest physical address
(IPA in Arm terminology) to host physical address (PA in
Arm terminology). Lastly, a physical attacker cannot tamper
with the data when it resides in the main memory because of
the bus-level encryption and integrity protection mechanisms.

In summary, CCA enforces isolation for the realm world
computation using a combination of stage-2 translations and
GPCs. However, these isolation techniques do not apply to
devices. Specifically, when a CPU core accesses memory, it
is subject to access control checks by the MMU. But, when a
PCIe device accesses the host memory, it bypasses the MMU.
To remediate this, host systems place an SMMU between the
device and the memory that can perform access control, such
that all PCIe accesses (e.g., GPU requests to DMA data from
the host to the device) are subject to checks. CCA augments
the SMMU’s legacy access control with GPC, such that all
device accesses to memory are now isolated at a world granu-
larity. For example, with TrustZone support, secure world de-
vices are allowed to access secure and normal world memory,
whereas normal world devices can only access normal world
memory. CCA’s RME Device Attach extends this notion to
the realm world allowing devices to access realm memory.

GPC SMMU
GPC

realm2 devrealm1 dev non-realm dev

SMMU
GPC

GPC GPC

realm2 devrealm1 dev non-realm dev

!
GPC
!

GPC SMMU
GPC

realm2 dev

!

Hyp.

config

realm1 dev

GPC

Hyp.

config
IDE

plain
text!

forged id

(a) (b)

(c) (d)

Figure 3: (a)-(c) Potential attacks when devices access realm
memory. (d) ACAI protection

4 Security Challenges

CCA’s device-accessible realm memory along with hardware
encryption on both CPU and accelerators, points to a perfor-
mant design that removes the need for multiple data copies
and software-based encryption-decryption (see Section 2).
However, doing so requires carefully addressing security con-
siderations to ensure that the end-to-end execution on device
and host composes safely. We outline the security gaps and
potential attacks when attaching PCIe devices to realm VMs.
Fine-grain Memory Isolation. Devices have to be securely
allocated to a realm VM in a way that an attacker cannot
launch man-in-the-middle attacks, tunnel the access through
untrusted devices, or attach the same device to multiple mu-
tually distrusting realm VMs. After device allocation, all its
accesses (e.g., DMA) have to be isolated not only to the realm
memory but specifically to the realm VM that owns the de-
vice. Otherwise, malicious devices attached to other realm
VMs can compromise computation (Figure 3a). Protecting
the shared memory between the device and the VM entails
stopping other VMs (in the realm or otherwise), devices, and
hypervisor from accessing it. CCA hardware ensures that the
GPCs on the MMU and SMMU are in sync to reflect the latest
state of access control rules at world granularity (e.g., that a
specific page belongs to the realm or the normal world). For
secure device access from a VM, this synchronization has to
be extended to be at a VM granularity. Note that the isolation
guarantees that GPCs provide depend on correctly deciding
the world that the device belongs to. Therefore, device iden-
tities that tie them to worlds must be unforgeable to stop
malicious devices from compromising security (Figure 3a).
Preserving Compatibility with Untrusted Code. Hypervi-
sors, VMs, drivers, and user applications should not require
invasive rewriting. Compatibility without compromising se-
curity requires ensuring that the untrusted hypervisor cannot
maliciously reconfigure devices, the MMU, and the SMMU.
Much like on Intel and AMD, the untrusted hypervisor on
Arm controls and programs the SMMU. It can mount attacks

4

on realm VMs by changing the SMMU’s translation tables to
allow an attacker-controlled device to access realm memory
(Figure 3c). Further, the hypervisor can emulate devices or
allocate compromised devices to break the realm VM’s data
confidentiality or execution integrity. Hypervisor optimiza-
tion techniques that allow multiple VMs or devices to access
the same physical page (e.g., memory sharing or copy-on-
write) can pose a threat to the isolation of protected memory.
Several device and SMMU features bypass all access con-
trol protections because they were designed for performance.
These need to be reexamined under the CCA threat model as
well.
Secure I/O Paths. Physical attackers can unplug devices,
change their ports, probe the memory, and tamper with bus and
PCIe transactions. Preventing such attacks requires bus- and
PCIe-level encryption with key management that accounts for
abrupt disconnections while ensuring that malicious devices,
VMs, and the hypervisor cannot abuse it. For example, the
untrusted hypervisor has access to the IDE keys in PCIe-5 and
can compromise data protected by its encryption (Figure 3b).

5 Our Approach

ACAI adopts a principled approach to securely attach devices
to realm VMs while preserving the existing CCA guarantees.

5.1 ACAI Isolation Principle
ACAI sets up a shared memory region between the realm VM
and the corresponding device, that we refer to as protected
region, in the realm world memory. ACAI aims to enforce
isolation such that an attacker cannot access the protected
region. Our approach is inspired by CCA’s notion of isolation
for CPU accesses. We use it to explain our design intuition
and how it leads to ACAI’s concrete invariants.

On the CPU, Arm CCA’s secure boot and attestation mech-
anism ensures that the cores are in the right state to run con-
fidential realm VMs. Similar to CCA, ACAI ensures that
the device and the realm start in a clean state and that their
identities are uniquely mapped to their dedicated protected
memory region (INVid). Once the identities are established,
ACAI has to ensure that the device is uniquely assigned to
a realm VM which can configure and manage it. Therefore,
ACAI guarantees that a device and all the memory on the host
used to configure the device is uniquely mapped to a realm
VM (INVown). Further, for physical attacker protection, ACAI
leverages CCA’s memory protection engine such that only the
device and the owner VM have the key to encrypt and decrypt
the data in the protected region.

With identity and ownership established, ACAI has to en-
sure the translations from guest PA to host PA used for the
protected memory regions are secure and compatible with
CCA. First, CCA dictates that for any host physical address
Ph that is allocated to the realm VM, one and only one guest

physical address Pg can map to it. The RMM, who is in charge
of managing the realm world memory, enforces this invariant
for the stage-2 translations between Pg and Ph. Since ACAI
extends a realm VM to allow access to the protected memory
region, our main intuition is to extend the existing CCA invari-
ant to this protected memory (INVhost). Next, since the device
also has access to the protected memory, ACAI ensures that a
similar invariant (INVdev) is applied to any device-side trans-
lations i.e., the SMMU. INVhost and INVdev enforce correct
translations for the host and device respectively. However, one
problem still remains. If the host and device-side translations
are not synchronized, an attacker can mount split-view type
of attacks. Therefore, ACAI ensures that the realm VM and
device always have the same view of memory by ensuring that
the RMM and SMMU stage-2 translation tables are always
synchronized (INVbind).
ACAI Invariants. ACAI aims to achieve the same security
guarantees for device-side accesses that Arm cores, monitor,
and the RMM achieve for CPU-side accesses. More precisely,
ACAI’s design aims to enforce the following invariants:

INVid: Identity. An accelerator attached to a realm VM is
assigned a unique unforgeable identity after attestation.
INVown: Exclusive Ownership. An accelerator is only acces-
sible to one owner realm VM who is allowed to configure the
device and setup protection keys and communicate with it.
INVbind: Owner binding. Owner realm VM and the accelera-
tors have the same guest PA to host PA mappings.
INVhost : 1:1 host and guest page mappings. Only one VM-
level guest PA resolves to the same host PA.
INVdev: No overlapping physical memory in the protected
region. For each host PA in the protected region, only one
accelerator has a valid mapping from guest PA to host PA.

Threat Model. ACAI assumes a malicious cloud provider, co-
tenants, and privileged software such as the hypervisor and se-
cure world software who want to compromise the confidential-
ity and integrity of a victim’s realm VM and its device-bound
operations. A physical attacker can plug in malicious de-
vices, compromise the connectors between nodes, and launch
probe attacks on DRAM chips that are not integrated into
the devices and SoCs. ACAI trusts the manufacturer of Arm
cores, devices, and PCIe port implementations. We include
the firmware and the RMM in the TCB and rely on CCA at-
testation mechanisms to ensure that it is untampered. Further,
each realm VM’s TCB includes the guest OS, device drivers,
runtimes necessary to access the devices, and the device-side
programmable logic such as kernels and IPs. The TCB may be
prone to Iago attacks when the VMs invoke untrusted hyper-
visor API. ACAI does not add any new API to the hypervisor
and relies on existing CCA protection for sanitization and
preventing Iago attacks [15].
Scope. ACAI does not protect against denial-of-service from
the malicious hypervisor or cloud provider but ensures that
realm VMs cannot cause denial of service to each other and to

5

the cloud provider. Defending against speculation attacks and
side-channel leakage due to micro-architectural implementa-
tion is orthogonal to our work and ACAI relies on existing
techniques and CCA’s native protection for such attacks.

5.2 Creating Protected Memory Regions
Background. In Arm CCA, the normal world Hypervisor
creates the realm VM (source granules) and then transitions
it to the realm world (destination granules). This invokes
the trusted monitor who updates the GPT to change these
pages from normal to realm world. The GPT changes trigger
flushing of TLBs and caches of all GPCs. Then the RMM
checks if the destination granule is valid and if so updates its
stage-2 translation tables; thus allowing the realm VM’s IPA
to translate to the granule’s host physical address (PA).
Shared Protected Region. ACAI requires a shared protected
memory region between the realm VM and the accelerator.
RME-DA enables devices to directly access realm world mem-
ory. Therefore, the ACAI protected memory region can reside
in the realm world as shown in Figure 3(d). ACAI has to
ensure that only the designated device and realm VM can
access it in the presence of malicious devices and VMs (Fig-
ure 3d). ACAI uses the RMM page tables to ensure that only
the realm VM that owns the protected region has the map-
pings in RMM’s stage-2 translation tables (INVhost). Similar
to RMM, ACAI programs the SMMU page tables to ensure
that only the accelerator that was mapped to the protected re-
gion has the entries in the SMMU’s stage-2 translation tables
(INVdev). Finally, on any changes to the RMM’s page tables
corresponding to the protected memory, ACAI explicitly syn-
chronizes the SMMU to reflect these changes (INVbind).
Protecting the SMMU. In CCA, the hypervisor has direct
access to the SMMU by default and can tamper with ACAI en-
forced mappings (INVbind , INVdev) as shown in Figure 3c. To
address this gap, ACAI uses the GPT to mark the SMMU data
structures (stream tables, stage-2 translation tables per device,
request-response buffers) to be only accessible in root mode.
If the hypervisor attempts to program the SMMU, it will fault
and trigger a handler in the monitor. Moving all the SMMU
management code from the hypervisor to the monitor would
result in a bloated monitor and cause loss of optimizations
employed by different hypervisors. Instead, ACAI introduces
an SMMU interface for the hypervisor to request SMMU
updates. ACAI only allows selective hypervisor requests that
satisfy its invariants on all SMMU operations.

5.3 Identity and Exclusive Ownership
Background. PCIe transaction packets contain a Reques-
terID that identifies the device that originated the packet. But
devices can set this field to arbitrary values. Integrity and Data
Encryption (IDE) in PCIe-5 ensures that each PCIe link per
device has a unique key which is used for data protection.

IDE-based Identity & Enforcing Exclusive Ownership. To
create a realm VM, the hypervisor sets up a new VM, pre-
pares the accelerator, and then invokes the monitor. Here,
ACAI amends the CCA’s VM creation in the monitor to simul-
taneously initiate a secure accelerator attachment to enforce
invariants INVid and INVown. The monitor probes the bus
to locate the accelerator and check if the accelerator is not
already mapped to any realm VM. If not, the monitor sends
a reset signal and requests an attestation report. ACAI uses
the RMM and monitor to ensure that only the owner realm
VM has access to the accelerator’s configurations ensuring
INVown. ACAI uses IDE to ensure that the accelerator has a
unique ID that does not overlap with existing devices (INVid).
Specifically, ACAI relies on the IDE keys programmed in the
root port of the host to ensure that accelerator IDs are unique.
Packets with forged accelerator IDs (e.g., using a malicious
device, plugging in a compromised device after attestation)
do not decrypt successfully and are discarded at the PCIe
root port. ACAI can use native device attestation support or
the high-level building blocks of PCIe-5 compliance that can
attest the accelerator and sign it with root port keys [5,32,46].
ACAI requires that the attestation report from the device con-
tains information about its firmware, configuration, and other
state after secure boot. The monitor forwards the accelerator
report to the RMM, who combines it with the realm VM’s
attestation for the remote verifier checks.

6 Accelerator Lifecycle

PCIe Devices & Memory. All PCIe devices, which are al-
ways connected to the PCIe root port, are behind the SMMU.
To discover PCIe devices, the hypervisor invokes the firmware
to probe the bus and read the configuration and Base Ad-
dress Registers (BARs) size from the device. Each device
can have up to 6 BARs in its PCIe configuration space. The
device uses the address in the BAR to access regions that are
memory-mapped by the kernel or hypervisor. Therefore, a
device’s memory comprises its PCIe configuration space, the
memory-mapped BAR regions for MMIO communication,
and dynamically allocated DMA regions. ACAI ensures that
all these regions are protected according to its invariants.
Device Attach. ACAI augments the realm creation process
to attach an accelerator while enforcing INVid and INVown.
Note that attaching an accelerator to a realm VM is similar to
adding data to the realm VM in the form of memory-mapped
BAR regions and the PCIe configuration space. So, ACAI has
to ensure that INVhost is enforced for these memory regions.

By default, the hypervisor resets the accelerator, disables
all debug configurations, and sets up its PCIe configuration
space. In CCA’s realm creation process, the hypervisor moves
all memory and data to the realm world before starting the
realm VM. Similarly, before starting such an accelerator at-
tach process, ACAI requires that the hypervisor has moved
all BAR regions of the accelerator and the PCIe configuration

6

space to the realm world and attached them to the realm VM.3

This ensures that the accelerator is locked and not accessible
to the hypervisor when it starts the device attach process. The
RMM ensures that the hypervisor has performed these steps
faithfully (INVhost) before starting the device attach process.
Locking accelerator access from the hypervisor is important
to correctly enforce INVid and INVown. Further, attaching the
configuration space to the realm VM ensures INVown.

To attach an accelerator to a realm VM in ACAI, the hyper-
visor adds two accelerator-specific details to the realm VM:
the contents of the PCIe configuration space that it setup and
the size of each BAR region. The RMM ensures INVhost for
the PCIe configuration space. It checks that the IPA to PA
mapping for the PCIe configuration space is valid and that
the PA is in realm world. PCIe BARs represent contiguous
regions of memory of sizes as indicated by the hypervisor. To
ensure that the memory-mapped regions of the accelerators
are correctly mapped to the realm VM (INVhost), for every
BAR in the PCIe configuration space, the RMM checks that
the whole memory region is already mapped to the realm VM.
Initialization & Device Attestation. In ACAI, the monitor
initializes the device and sets it up to ensure INVid . The RMM
forwards the PCIe accelerator’s bus address that it receives
from the hypervisor and the PCIe configuration region’s phys-
ical address to the monitor. The monitor uses the accelerator’s
bus address to re-scan the PCIe bus, proceeds to read the
accelerator’s configuration, and writes that to the physical
address of the PCIe configuration space sent by the RMM.

ACAI monitor implements the attestation protocol accord-
ing to the Security Protocols and Data Models (SPDM), a
standard to enable authentication and attestation which can
be used for devices [5, 22]. As part of the SPDM protocol,
the monitor also invokes the IDE key management protocol
according to the PCIe specifications [46]. The monitor blocks
the return of this call until it receives the attestation report
from the accelerator. When the protocol completes and the
monitor receives the attestation report, it writes the attestation
report to the RMM memory and returns from the call back to
the RMM. Note that ACAI performs IDE key programming
before reading the configuration and attestation reports from
the accelerator. This prevents TOCTOU attacks—if the ac-
celerator is replaced or reset after the key programming, all
communications from the host will be encrypted with a key
that is not accessible to the device. Therefore, this process
securely resets the accelerator, creates an unforgeable identity
using IDE, and collects the attestation report.
Realm Attestation. ACAI extends the attestation process
of CCA to enable a remote verifier to check the attestation
reports from the device. In CCA, the RMM extends the at-
testation measurement over the data that was copied into the
realm VM. ACAI reuses this mechanism in the RMM for
the memory-mapped regions and PCIe configuration space.

3The data in the PCIe configuration space and BAR regions is determinis-
tic on device reset

Specifically, the BAR regions mapped to the device are added
to the realm VM like any other realm VM memory. Further,
the bus address of the accelerator, and the PCIe configuration
space including the size of the BAR regions is part of the data
added to the realm VM by the hypervisor. So the RMM’s
attestation report will indicate the accelerator attached to the
realm VM, the PCIe configuration space, and the regions of
memory that are used for the BARs and their sizes. Further,
the RMM appends a new section to the attestation report with
the accelerator attestation report that is returned by the mon-
itor. A remote verifier can now use the attestation report to
ensure that the accelerator is correctly initialized (e.g., correct
firmware, debug disabled, non-PCIe ports disabled), attested,
and all device-mapped memory is in the protected region.
Establishing Secure Accelerator Identities. In PCIe-5 with
Integrity and Data Encryption (IDE), the data on the PCIe link
is protected from a physical adversary. ACAI relies on PCIe
features to establish unique accelerator identities (INVid). The
IDE keys are stored in the physical root ports of PCIe end-
points, preventing a software adversary such as the hypervisor
from tampering or replacing them. The manufacturer is ex-
pected to ensure this, either by keeping the keys in hardware-
protected memory in the root port or in the protected SRAM
of the host system [44]. ACAI requires these keys to be stored
in memory that is only accessible to the monitor (e.g., root
world SRAM). The PCIe root port is programmed by the
monitor with a unique key during the device attach process.
The monitor ensures that the RequesterID (RID) used for the
key mapping is unique. If a malicious device originates PCIe
transaction packets with forged RIDs, the packets will fail to
decrypt in the root port and hence will be discarded.
Device Detach. ACAI only allows the hypervisor to detach
devices from a realm VM in the realm VM destruction phase.
When a realm is destroyed, the RMM invokes a call to the
monitor to remove any devices attached to the realm with the
realm’s VMID. The monitor removes any device-to-VM map-
pings it has, and deletes the corresponding device state from
the SMMU (see Section 7.1). All device memory is removed
from the realm VM according to normal CCA mechanisms
for realm destruction. Specifically, the hypervisor invokes the
RMM to transition the granules back to the normal world. In
Arm’s RMM specification, in this phase, the monitor transi-
tions all realm VM granules back to the normal world after
the hardware scrubs the data in the pages.
Design Decisions. We opt for a conservative but secure de-
sign where devices have to be attached at realm VM creation
and detached at realm VM destruction. This is in line with the
cloud model, where the tenant has to pay for a VM and a de-
vice attached to it and is not allowed to dynamically allocate
accelerators. For example, on AWS a VM with a GPU (P3)
or an FPGA (F1) instance is provisioned together, as in ACAI.
Some accelerators (e.g., GPUs) can operate in multi-tenant
mode where a physical accelerator is shared among multiple
VMs. Enabling such virtual shares in our threat model re-

7

quires native device virtualization (e.g., MIGs on H100 [43])
to provide isolation and per-unit encryption keys. If avail-
able, ACAI is compatible to enable multi-tenancy because
the IDE specification and CCA DA support device virtualiza-
tion. However, we leave it to future work to closely examine
the security challenges of device virtualization. For example,
virtual shares have common state (e.g., address translation
tables, cached translations) that an attacker can exploit.

7 Memory Isolation

Arm SMMU is an IOMMU that performs access control and
address translation for devices using StreamID to identify the
devices. The hypervisor sets up and manages the SMMU’s
configuration and stage-1 and stage-2 translations for the nor-
mal world. Specifically, the hypervisor configures the SMMU
with the Stream Table’s base address. The Stream Table con-
tains entries called Stream Table Entries (STEs) that describe
the configuration and translation tables for each device. For
each incoming transaction, the SMMU uses StreamIDs to
index into the Stream Table to look up the STE. Further, to
perform stage-2 translation, the SMMU reads the translation
table’s base address from the STE. Before Arm CCA, the
SMMU could differentiate incoming transactions as normal
or secure based on a 1-bit long world bit. To support realm
transactions, CCA extends the world bit to be 2-bits long
(world_ext). The SMMU expects the world_ext bits to
be set correctly, either by the device or the root port, for all
transactions and does not perform any additional checks.

Applications use MMIO and DMA to communicate with
the devices. They use memory-mapped IO (MMIO) regions to
transfer small amounts of data to devices. Physical addresses
that can be memory-mapped to devices are not backed by
actual host memory (e.g., DRAM). Instead, the application
directly accesses the device memory using address translation.
The BARs indicate all the MMIO regions used by the device
attached to a realm VM. In Section 7.1 and 7.2, we explain
how ACAI protects the SMMU and MMIO/DMA operations.

7.1 SMMU Changes and Secure Setup
World-level Isolation. Arm CCA enables realm world trans-
actions and a realm programming interface in the SMMU [5].
But it does not explain how one would identify a device to be
associated with a realm VM. Further, CCA states that the pro-
tocol to set the world_ext bits is implementation defined [7].
In ACAI, identifying and binding transactions to realm VMs
is critical for security. Therefore, ACAI defines how to set the
world_ext securely to identify realm transactions and bind
transactions to realm VMs, as summarized in Figure 4.

For each core, CCA has a core-specific register to track its
execution world. The monitor sets this world for each core
on context switch. The GPC reads this register to perform
memory access checks. Similarly, the GPC on the SMMU

rsi_delegate_prot_mem

.

.

.

VMID1
.
.
.

.

.

.

STE VMID1

S2

.

.

.

.
.
.
.
.

Stage-2 Translation

Realm VM

RMM

SMMU state

RID

RID K1

Monitor

smc_device_attach

PCIe Root Port

Stage-2 trans. tables

IDE keys

Stream ID = RID ….

realm memory

SMMU

IDE

RID, EncK1(…), T=1

DecK1(…)

RID, (…),
world_ext=Rl

GPC

addr,
PAS=world_ext

2

3

4

1

5

6

normal memory

SMMU

RID, (…),
world_ext=NS

GPC

addr,
PAS=world_ext

PCIe Root Port

RID, (…), T=0

Stream Table

Figure 4: ACAI’s interfaces and software. Green: new compo-
nents; Brown arrows: accesses made with root world PAS. 1⃝
accelerator originates transaction with RID and T=1 for realm
transactions. The data is encrypted with key K1 setup for IDE.
2⃝ Host Root Port (RP) reads K1 based on RID 3⃝ to decrypt.
4⃝ RP sends transaction to SMMU with world_ext bits set
to realm world. 5⃝ based on world_ext, SMMU indexes
Realm Stream Table (as root world) with RID to perform
stage-2 translation and gets a physical address. 6⃝ SMMU
tags the memory address with world_ext for GPC checks.

needs to identify the world of each memory access from the
device. ACAI leverages PCIe-5 IDE to infer the world of every
device transaction to and set the world_ext bits. Specifically,
it stipulates that all realm world transactions must be subject
to IDE. ACAI expects the devices to explicitly tag all realm
world transactions by setting a T bit. Note that, a transaction
with T=0 cannot access realm world memory and will be re-
jected by the GPC as shown in Figure 4. Any transaction that
accesses memory in the realm world (T=1 in Figure 4) has
to be successfully decrypted in the PCIe root port. Therefore,
this mechanism guarantees that the RID and the T bit are cor-
rect and can be safely used to infer the world of the transaction
(world_ext=Rl in Figure 4). This approach ensures that the
SMMU can correctly perform translation for all devices.

Intra-realm Isolation. With the above approach, GPC on the
SMMU can isolate realm memory from non-realm devices.
However, this is not sufficient to isolate mutually distrusting
realm devices (Figure 3a). The RMM isolates mutually dis-
trusting realm VMs using stage-2 translations. It stores these
tables and other realm configurations in protected realm mem-
ory inaccessible to the hypervisor. Correspondingly, ACAI
uses the SMMU’s stage-2 translation to isolate mutually dis-
trusting devices from accessing each other’s protected realm
memory. Updates to the SMMU’s stage-2 translation tables
must ensure INVbind and INVdev. Therefore, we need to pro-
tect both the Stream Table and the stage-2 translation tables as
shown in Figure 4. Further, we need to protect the SMMU’s

8

memory-mapped configuration registers as they can be used
to compromise the security of the system (e.g., turn off the
SMMU, turn off stage-2 translations). In ACAI, the monitor
checks all updates to the SMMU. It introduces ACAI inter-
face, which the hypervisor has to use to perform its operations
on the SMMU. Specifically, the monitor uses the list of realm
devices that it maintains and only allows the hypervisor to
change stage-2 translations of non-realm devices. For up-
dates to the SMMU’s configuration, the monitor maintains
an allow-list of non-security critical fields and only allows
the hypervisor to update them. To enforce INVdev, for every
update to the SMMU’s stage-2 translation tables for realm de-
vices, the RMM ensures that: (a) the PA is not mapped in any
other device’s stage-2 translation tables (INVdev) by check-
ing a reverse mapping;4 (b) the IPA is not already mapped
in the stage-2 table for this StreamID. Further, the RMM en-
sures INVbind by checking that for every update to the stage-2
table of the SMMU, the corresponding IPA to PA mapping
exists in the stage-2 tables of the owner realm VM.

To ensure INVown during the device attach process dis-
cussed in Section 6, ACAI monitor also maintains a list of
all realm device StreamIDs as shown in Figure 4. While at-
taching a device to a realm VM, the monitor locks the Stream
Table before processing the request from the RMM (as ex-
plained in Section 6). It then checks that the StreamID for the
device is not already assigned (INVown) in its list and creates
a new STE in the Stream Table. If the StreamID is already
assigned, it aborts the realm creation process.

The SMMU performs root memory accesses for stage-2
translations (step 5 in Figure 4). Since the SMMU is trusted
hardware, it can originate accesses in root mode to manage
the stream and translation tables, irrespective of the world
of the transaction itself. Independently, the device access
is also subject to a GPC check, based on what world the
device belongs to. Hence, the SMMU can perform stage-2
translations for all devices correctly while ensuring that the
world isolation for memory accesses from devices is still
enforced.
Security Decisions. The RME-DA allows the RMM to di-
rectly manage the realm streams. In ACAI, we make a con-
scious choice to move all the SMMU operations to the moni-
tor, such that neither the untrusted hypervisor nor the trusted
RMM can directly change it. Our choice is based on two
main reasons: (a) the SMMU has several global configuration
values, which if set incorrectly by the RMM or intentionally
tampered by the hypervisor, can break the security guarantees;
(b) If we allow the hypervisor and the RMM to simultaneously
update the SMMU, it will open several attack vectors such
as Iago attacks [15], race-conditions [16], and re-entrancy
attacks. Defending against these attacks is challenging and
requires careful handling of legacy hypervisor code as well
as formal treatment of the resulting design [25, 40]. Instead,

4For the reverse mapping, the RMM can maintain reverse page tables or
an array indexed by PA. Currently, RMM does the latter.

we choose to implement a centralized SMMU interface in the
monitor which enforces our security invariants and serves as a
single vantage point to enforce checks that disallow the hyper-
visor from enabling unsafe features such as debugging. Case
in point, RME-DA allows the device to use a performance fea-
ture called Address Translation Services (ATS) wherein the
device can bypass the SMMU translations and directly access
host memory using real physical addresses. Our monitor ex-
plicitly disallows this and several other features. Specifically,
ACAI maintains a limited allow-list of safe SMMU features,
and rejects any requested settings that violate it.

7.2 MMIO and DMA

In ACAI, all memory-mapped regions for a device are transi-
tioned to realm world and mapped to the realm VM as part of
the device attach process as discussed in Section 6. The cores
directly issue all the reads and writes to the memory-mapped
regions without the involvement of the RMM or the monitor.

Applications use DMA to transfer large amounts of data
between host and device memory. In ACAI, this has to be
mediated via protected region. The realm VM’s OS builds a
scatter-gather list of the memory to be marked as protected
region memory before initiating the DMA operation. To en-
able secure DMA and enforce INVbind and INVdev, ACAI
introduces a new RMM interface call for the realm VM’s
OS. Once this scatter-gather list is setup, the OS can invoke
this interface to transition the DMA memory to the protected
region. For this, the OS sends a list of IPA and the size of
each region along with the device id to the RMM. The RMM
services this request by first translating the IPA to PA using
its stage-2 translation tables for the realm VM. This process
ensures INVbind and INVdev because the same IPA to PA map-
ping is used to update the SMMU’s stage-2 translation table.
Note that, all memory transitioned to protected memory this
way already belongs to the realm VM and abides by INVhost .
But, allowing the device to access this memory requires ex-
plicit steps. To transition the memory to protected region,
the RMM invokes the monitor which updates the SMMU’s
stage-2 tables as discussed in Section 7.1. After this, the de-
vice can access the protected region via DMA. This approach
only changes the Linux Kernel. It requires no changes to the
application (on both the processor and the device), the device
driver, the runtimes, and accelerator logic.
Transparent Encryption & Decryption. In CCA, the main
memory connection to the bus on the host includes a memory
protection engine (MPE) that encrypts data before storing and
decrypts it on the way to the bus. It relies on the Memory
Encryption Contexts (MEC) extension which is a part of Arm
CCA [4]. With MEC, CCA allows each realm VM to be
associated with a unique key. Then the MPE ensures that all
data from a realm VM, say with ID R1, is encrypted with its
own key (say KR1). ACAI leverages the MPE and MEC to
protect data stored in host DRAM. For PCIe communication,

9

MPE Accl.

ctDRAM

Realm
VM1

MECID=R1
Realm
VM2

MECID=R2

R1 KR1
R2 KR2

MECID KEY a

R1

RID1 KRID

b

R1
decK (ct)

1

IDE

RPhost

IDE

RPaccl

PCIe

ct

encK (pt)
DRAM

DMA read
MMIO write

1
RID1 KRID1

pt
encK (pt)

a‘

RID1
decK (ct)

32 pt4

RID1

Figure 5: MMIO and DMA in ACAI. IDE keys in Root Ports
(RPs) are setup by the monitor on device attach. Blue arrows
show DMA read and Orange arrows show MMIO write.

ACAI uses PCIe IDE support in the host and accelerator root
ports to protect the data while it transits the PCIe links.

Concretely, the following steps are performed for DMA as
summarized in Figure 5. When a realm VM writes plaintext
data pt to memory, the MPE encrypts pt to form ciphertext
ct (step a). Further, when the accelerator initiates a DMA
read, the MPE decrypts ct and sends it to the RPhost (step
b). Next, RPhost uses the RID1 to encrypt pt to form ct (step
1). The ct is then transmitted over PCIe to the accelerator
(step 2), to reach RPaccl. It uses the RID1 to decrypt ct (step
3), and finally stores pt in the accelerator’s DRAM (step 4).
Similarly, for MMIO (step a’), when a realm VM writes (pt)
to a memory-mapped region of the accelerator the write is
forwarded to the RPhost by the MMU. Then, pt is transferred
to the accelerator (steps 1−4). Note that, pt in step 1 is safe
from a physical attacker as it does not leave the Arm SoC
before being encrypted by the RPhost. Similarly, step 4 writes
pt to the accelerator’s tightly integrated DRAM which is safe
from a physical attacker [52].

8 Security Analysis

ACAI’s invariants to setup device identities and memory pro-
tection achieve secure composition of CPU and device TEEs.
Any attacks that remain would either break guarantees pro-
vided by the CPU TEE (i.e., CCA) or the device TEE itself.
Untrusted Hypervisor. It can compromise the MPE and IDE
encryption keys. However, as explained in Section 6, these
keys are protected in the root mode and inaccessible to the
hypervisor. The hypervisor can emulate PCIe devices and
trick ACAI into attaching them to realm VMs. Such attempts
would be detected through attestation according to INVid .
Specifically, an emulated device cannot produce an authentic
attestation report and would be detected by the remote ver-
ifier. Further, the hypervisor cannot emulate a device after
attestation because the configuration space is locked by the

monitor and the IDE keys are programmed before gathering
the attestation report. During device attach, the hypervisor
can allocate incorrect BAR region sizes, but it will be detected
during attestation. Further, the hypervisor can allocate mem-
ory for the BAR regions in the normal world, instead of realm
world. However, the RMM ensures that all memory-mapped
regions are transitioned to realm world and assigned to the
realm VM to ensure INVhost .

The hypervisor can change the PCIe configuration space of
a realm device to setup memory-mapped regions in the normal
world. Similarly, it can provision DMA memory for the realm
devices in the normal world. Such memory mappings to the
normal world memory would compromise security guarantees
that ACAI accords to computation on the accelerator. These
attacks are thwarted by ACAI by ensuring that all device
memory and configurations are mapped solely to the realm
VM that owns the device according to INVown and INVdev.
The hypervisor can register a malicious realm device with
the same identity (RequesterID) as a victim realm device. To
enforce INVid and INVown, the monitor always checks that a
device is not already linked to a realm VM before assigning it.
Therefore, such attacks from the hypervisor will be detected
and stopped. The RMM exposes an interface to the hypervisor
to allow it to transition realm memory back to normal world.
While a device is performing DMA to a region of memory,
the hypervisor can invoke the RMM to transfer this memory
back to normal world. If this succeeds, the device would write
sensitive data to unprotected normal world memory. However,
CCA specification does not allow the hypervisor to transition
realm memory that is still attached and in use by the realm
VM thus stopping such attacks [6].
SMMU Configuration. The untrusted hypervisor can: (a)
reconfigure the SMMU to bypass stage-2 translations, and
(b) rewrite the stage-2 translation tables to allow attacker-
controlled devices to access the protected region. The mon-
itor prevents these attacks by storing all SMMU data struc-
tures (Figure 4) in root memory to enforce INVown. Without
direct access to the SMMU, the hypervisor can still setup
overlapping mappings with a malicious realm device (e.g.,
map the same PA to the victim and malicious device during
device attach). This attack is thwarted by the RMM which
enforces INVdev. Further, the hypervisor can set up SMMU
mappings to allow a normal world device to access protected
memory. When the normal world device originates such an
access to realm memory, the GPC on the SMMU will deny it.
Malicious Co-tenants. A malicious realm VM can attempt
to set up overlapping DMA memory regions with a victim’s
device to access its memory. As per INVhost , the RMM checks
its stage-2 translation tables to find that the malicious realm
VM is requesting DMA mappings for PAs it does not own,
and denies such mapping requests.
Other Malicious Devices. They can originate PCIe packets
with the identity (RequesterID) of a victim device attached
to a realm VM. As per INVid , the monitor ties the identity

10

Table 2: New interfaces and updates introduced by ACAI.

API Status Description

rmi_data_create changed add data from normal world to realm memory.
ACAI adds attach_dev flag.

rsi_delegate_prot_mem new delegate realm memory to protected memory.
calls smc_delegate_prot_mem.

smc_device_attach new attach and detach a device from realm.

smc_delegate_prot_mem new delegate realm memory to protected memory.
add stage-2 translation for the SMMU.

(RequesterID) of the realm device to the IDE key used for
encryption. Therefore, any packet that the malicious device
originates with the victim’s identity will fail to decrypt suc-
cessfully at the root port. Malicious co-tenant realm devices
can originate PCIe traffic to access PAs that are mapped to
victim devices. ACAI uses the SMMU’s stage-2 translation
tables to enforce INVdev that ensures that these accesses are
not possible. In particular, the stage-2 translation tables en-
sure that there is no valid mapping for the malicious device to
access the victim device’s protected realm region. Further, the
PCIe network is not trusted and can have untrusted devices
on path that can intercept the communication. However, all
traffic between the host and the device is encrypted using IDE
and cannot be compromised by such on-path devices.
Physical Attacker. It can read, inject, modify, record, and
replay PCIe packets on the untrusted PCIe network (e.g., PCIe
switches, interposers). ACAI uses PCIe IDE to ensure INVown
and encrypts all its PCIe traffic to thwart such attacks. Fur-
ther, the attacker can read data from the host DRAM (e.g.,
cold boot attacks) which are stopped by CCA’s MPE based
encryption. A physical attacker can plug in compromised de-
vices (e.g., debugging features enabled, old firmware). Such
devices, if attached to a realm VM, can compromise its se-
curity. ACAI relies on attestation to ensure that the device
attached to a realm VM is properly configured and expects the
remote verifier to check for misconfigured devices. Further, a
physical attacker can plug in or route the PCIe packets to a
malicious device after the attestation checks pass. However,
such a device will not have the IDE keys to encrypt/decrypt
communications with the host realm VM.

9 Implementation

We prototype ACAI on ARM Fixed Virtual Platform (FVP)
with RME-support and Cortex-A53 board with no RME.

9.1 Putting it together
Existing APIs. ACAI does not make any changes to CCA or
Arm architecture. Instead, it extends the monitor and RMM
software interface to realize its mechanisms (see summary in
Table 2). We first explain the existing mechanism for creat-
ing realm VMs with CCA. As per Arm’s specification, the

hypervisor creates the realm VM and then transitions it to the
realm world. When the RMM receives such a new realm cre-
ation request from the hypervisor, the RMM creates VMID,
a unique ID per realm VM and uses it in all its internal data
structures to track contexts that refer to this VM. Then the
hypervisor transfers the VM to the realm world using two
RMI calls: rmi_granule_delegate moves memory from
normal to realm world; rmi_data_create populates data
and assigns memory to the realm VM. For the data, the RMM
copies contents from a source granule (src) to the destination
granule (dst). Note that, src and dst are sent as arguments
to the RMI call. Further, the RMM maps the destination gran-
ule to the ipa from the arguments of the call in its stage-2
translation tables, after checking that it is valid. A mapping
is valid if (a) the PA, in this case the physical address of the
dst, is not mapped to any other realm VM; and (b) the ipa
is not already mapped in RMM’s stage-2 translation tables.
FVP. Arm Fixed Virtual Platforms (FVP) are simulations
of Arm systems, including processors, memory, and periph-
erals with annotations to run at speeds of real hardware. We
prototype ACAI on Arm FVP_Base_RevC-2xAEMvA with
RME-support. We considered other open-source alternatives
such as Samsung Islet [47], Huawei QEMU RME-support ex-
tension [28], Twinvisor [39], and virtCCA [53]. However, we
decided to use the FVP with the Trusted Firmware-a (TF-A)
and TF-RMM [8, 9] because they are officially supported by
Arm and best represent Arm’s hardware and software stack.
TF-A. It is an open-source software for the EL3 monitor [8].
We augment it to protect and manage stage-2 translation ta-
bles and configuration registers of the SMMU. We imple-
ment two new SMCs in the TF-A (See Table 2). The SMC
smc_device_attach exposes an interface for the RMM to
attach and detach a device to a realm VM. The FVP mod-
els PCIe devices connected to an SMMU. While we cannot
use these modelled devices to generate traffic, we can use
them in our implementation to measure the overheads of at-
taching a device. To this end, ACAI probes the PCIe bus and
reads the configuration space of the device while attaching
it. To detach a device, we probe the PCIe bus to emulate a
device reset. With this approach, we cannot model device-
side attestation, IDE key programming, and MPE. We add
smc_delegate_prot_mem to enable the RMM to delegate
device memory to the protected region and setup stage-2 trans-
lations (c.f. Section 7.1). Further, we implement an ACAI in-
terface to securely allow the hypervisor to manage the SMMU
configurations for the normal world.
RMM. We extend the open-source TF-RMM implemen-
tation with a new rsi_delegate_prot_mem for the realm
VM to protect device memory during runtime, as dis-
cussed in Section 7.2. We also setup stage-2 translations
for the SMMU as explained in Section 7.1. To attach the
accelerator to the realm VM, we add a new flag called
attach_dev to rmi_data_create. The hypervisor uses
the rmi_data_create with the attach_dev flag to indi-

11

TF-A Monitor

RMM

Linux
KVM

FVP Process

x86 Host

Accl.
drivers

PCIe

Realm VM

stub
drivers

Accl. app

Acclerator

FVP Process

escape

Figure 6: Experimental Setup. The full device drivers run on
the x86 host. In the realm VM we run stub drivers that enable
the FVP-escape mechanism. The x86 host setup is only used
for evaluation and does not impact the security of ACAI.

cate that the data in this RMI call is used to attach a de-
vice to the realm VM. On receiving this call, the RMM
performs the checks discussed in Section 6 and invokes
smc_device_attach to attach a device to the realm VM.
Further, we extend the realm VM destruction process to call
smc_device_attach to detach a device, if present.
Linux. In the normal world, we boot Linux in EL2 with
KVM patches that add support for RME and the creation
of realm VMs. We change Linux’s Arm SMMU driver to
make SMC calls to configure the SMMU and its stage-2
translation tables by adding 636 LoC. We use kvmtool, a
lightweight tool for hosting KVM guests, from Arm to build
and deploy realm VMs from the normal world. We augment
kvmtool to be able to invoke rmi_data_create with the
attach_dev flag. For the realm VMs, we build Linux with
patches to enable communication with the RMM. We extend
the Linux kernel and add a kernel module to the realm VM to
call rsi_delegate_prot_mem as explained in Section 7.2.
Device Communication. The Arm FVP does not provide
functional interfaces to connect PCIe devices. Our host ma-
chine is an x86 workstation connected to PCIe devices. It runs
the FVP user process, as shown in Figure 6. We have to allow
the realm VM emulated in the FVP process to communicate
with the real PCIe devices connected to our host machine. To
enable this, we implement an FVP escape mechanism. We
modify the Linux kernel on our x86 host machine to enable
devices to directly access the FVP user process’s memory. To
allow applications running in the realm VM on the FVP to
communicate with the devices, we implement stub drivers.
On the x86 host, we register page-fault handlers to memory
regions in the FVPs address space. When the stub drivers
access these memory regions, the fault handler invokes the
device drivers on the x86 host to perform the operations. To
implement these stub drivers, we utilize an open-source device
stack. For the GPU, we use Gdev [36] as a CUDA runtime
and libdrm with Nouveau from the v5.10 Linux kernel as the
driver on our host machine. We cross-compile Gdev for ARM
using Arm GNU Toolchain. We run our experiments on a
GeForce GTX 460 SE GPU that is compatible with Gdev and

Nouveau. For the FPGA, we use a Xilinx Virtex Ultrascale+
VCU118 FPGA. We use Xilinx’s XDMA driver, which we
create stubs for and cross-compile for ARM.
GPU and FPGA. For the baseline encrypted mode, we aug-
ment the benchmark applications on the GPU with encryp-
tion/decryption kernels that use AES-CTR mode encryption
with 256-bit block size 5. Similarly, for the FPGA, we use stan-
dard implementations of AES-CTR mode from Vitis libraries
to add encryption to the user logic executing on the FPGA. Be-
cause these Vitis Libraries are not natively supported for our
FPGA, we port them using Vitis HLS and Vivado to run on
our board. To measure the costs of encryption for GPU apps
on the host, we cross-compile libopenssl 1.1.1q to Arm. The
FPGA applications are written in Python so we cross-compile
Python as well as libcrypto to run on the FVP.
Optimization. In ACAI, the realm VM requests stage-2 trans-
lation table mappings for DMA during runtime. ACAIOPT op-
timises this by extending the realm creation explained for
ACAI in Section 6 to pre-setup SMMU stage-2 translation
tables. Specifically, if a device is attached to the realm VM,
ACAIOPT adds SMMU stage-2 translation table entries for all
realm VM memory before starting the realm VM. Further,
during the runtime of the realm VM, ACAIOPT ensures that
any new memory added to the realm VM (via RMI calls)
is also mapped in the SMMU’s stage-2 translation tables.
This approach ensures that the device has access to the en-
tire realm VM memory eliminating the necessity of invoking
rsi_delegate_prot_mem for each DMA. The trade-off is
that this optimization increases the time for realm VM cre-
ation and extends realm VM memory as well as the size of
the stage-2 translation tables stored in the root.

9.2 Performance Evaluation Prototype
We use the Zynq UltraScale+ MPSoC ZCU102 with an Arm
Cortex-A53 64-bit quad-core processor to estimate ACAI per-
formance. We run our modified TF-A with SMMU and GPT
changes in EL3. Because the processors do not support GPC,
we estimate the overhead of programming the GPT regis-
ters by using other idle EL3 registers (i.e., AFSR0_EL3 and
AFSR1_EL3). The processor does not have RME support.
Therefore, to emulate the realm world, we create a Realm
context in the normal world. We run a modified RMM in
the EL2 of the Realm context. To create this context, we use
Xilinx PetaLinux tools that enable us to build a custom TF-A
that also boots the modified RMM. We adapt the TF-A and
RMM we run on the FVP to boot on the board. This requires
us to replace RME specific instructions (e.g., to invalidate
GPT TLBs) and adapt the translation tables to be compatible
with Armv8-A. The RMM implementation requires that it is
run in the realm world. In our Realm context, we ensure the
right security state by setting the SCR_EL3 register. Xilinx
Petalinux tools does not allow us to load custom stage-1 and

5For simplicity, we use AES-CTR mode instead of AES-GCM.

12

Table 3: Overview of GPU Benchmarks. Task refers to the
number of CUDA kernels launched on the GPU. T Size: Trans-
fer size in MB. P Size: Problem Size in points

App Domain Tasks T Size P Size

nn Dense linear algebra 1 1 42764
gaussian Dense linear algebra 3148 38 1575 × 1575
needle Dynamic programming 229 39 1840
pathfinder Dynamic programming 5 20 50000 × 100
bfs Graph traversal 2 3 1840
srad_v1 Structured grid 102 2 502 × 458
srad_v2 Structured grid 4 64 2048 × 2048
hotspot Structured grid 5 3 512 × 512
backprop Unstructured grid 2 71 262144 × 16 × 1

Table 4: Overview of FPGA Benchmarks

App Domain T Size P Size

matmul5 Matrix Multiplication 300 B 5 × 5
matmul10 Matrix Multiplication 1200 B 10 × 10
svd32 Singular Value Decomposition 32 KB 32 × 32
svd64 Singular Value Decomposition 128 KB 64 × 64

stage-2 bootloaders. Therefore we move RME-specific initial-
ization (e.g., GPT setup) to bl3. Since the processors do not
have RME, our measurements do not reflect true GPC cost.

10 Evaluation

Compatibility. We build a VM with kvmtool that includes
Arm’s changes to support CCA. The VM uses a patched Linux
kernel 6.2 that supports CCA both as host and guest OS. The
only change that ACAI requires is adding an ACAI-helper
kernel module comprising 320 LoC to the realm VM. We do
not change the applications, accelerator drivers, or runtimes.
TCB. Our baseline setup is a confidential VM using an
accelerator device with bounce buffer design [42]. Its TCB
includes the monitor, the RMM, and the guest kernel (to-
tals 25.9M LoC) as well as the device runtime, the driver,
and the software implementation for memory encryption (to-
tals 203KLoC and 6.5KLoC for GPU and FPGA respec-
tively).6 Our modifications to the monitor 1588 LoC, the
RMM 382 LoC, and the guest kernel 1734 LoC are mini-
mal. Overall, ACAI adds 3704 LoC to the TCB, totalling
26.1MLoC and 25.9KLoC for GPU and FPGA respectively.

10.1 Experimental Setup

We run our experiments on an x86 host with a 32-core dual-
socket Intel Xeon Gold 6346 CPUs and 378 GB RAM.
Benchmark Selection. We select a standard set of GPU
benchmarks from the Rodinia testsuite [14]. Instead of the

6For simplicity, we leave out the size of software encryption implementa-
tion (e.g., 835 KLoC) of OpenSSL, from the baseline TCB.

latest Rodinia release from gdev-bench [35], we use version
2.1 since it uses CUDA Driver APIs and is compatible with
Gdev. Of the 11 available benchmarks, we successfully test
9. We exclude lud and heartwall because they crash even
on the unmodified system, probably because they are incom-
patible with our GPU. Nevertheless, as shown in Table 3, the
benchmarks cover a wide range of domains, data workloads,
and sizes of applications. We fail to identify a standard bench-
mark that is used for FPGAs. We surveyed the hand-coded
benchmarks from prior works [56]. Some of them are not sup-
ported on our FPGA (e.g., DNNWeaver runs on KCU1500).
Our choice of FPGA was based on what is available on cloud
FPGAs (e.g., Amazon F1). However, custom-coded apps for
the cloud do not run on local FPGAs because they expect
Amazon shell on AWS. Thus, we hand code Matrix Multipli-
cation and Singular Value Decomposition (see Table 4) using
existing algorithms from Vitis Libraries and Vitis HLS.
Benchmark Configurations. Our vanilla setup Bv which
comprises an unmodified monitor, RMM, and hypervisor,
measures the benchmark performance on a VM in the normal
world. To measure the effect of ACAI changes on normal
world operations (Av), we execute the benchmarks in the nor-
mal world VM but with a modified monitor, RMM, and hyper-
visor. For measuring ACAI in encrypted mode (Ae) we launch
the same setup as above but run the benchmarks in a realm
VM equipped with software encryption. Then, we enable
ACAI protected mode (Ap) and measure the benchmark per-
formance with a modified monitor, RMM, hypervisor, guest
Linux kernel hooks, and SMMU. Comparing Ae and Ap, we
can quantify the improvements due to ACAI protection mode.
Note that Ap and Ae include the pure cost of CCA’s protec-
tion. To decouple the ACAI cost from baseline CCA cost, we
setup a configuration where we launch the realm with unmod-
ified software (Br). Thus, we can compare the performance
of ACAI (Ap and Ae) with normal world execution (Bv and
Av) by deducting the costs of CCA (Br). Further, we do the
optimization (Ao) (c.f. Section 9.1) and compare it to Ap.
Arm FVP. Our FVP base model, the proprietary version
publicly offered by Arm, emulates 8 Arm cores with features
from v8.2 to v9. We use the Model Trace Interface (MTI)
in the FVP to count the number of instructions and events.
This latest version of the FVP (FVP_Base_RevC-2xAEMvA)
has support for RME. We thus use this model to emulate
Arm CCA and realm VMs. The FVP simulates a limited
implementation of the PCIe standard and does not support
real device connections over PCIe. So the physical device
(e.g., a real GPU) and FVP cannot access each other’s
memory to send and receive data. We address this in two
steps: First, we run the FVP user process on a host machine
that is connected to a PCIe device. We then add an escape
mechanism on the host machine such that the device can
access (parts of) the FVP process memory as shown in
Figure 6. Specifically, when the VM inside the FVP allocates
device memory, our escape mechanism presents this as a host

13

Ae
Ap
Ao

Br
Av
Bv

Figure 7: Overheads for GPU benchmarks.
memory to the PCIe device. This allows us to emu-
late direct device accesses from the FVP—when the VM
makes DMA or MMIO operations, they are visible to the
PCIe device and vice versa. Our SMMU GPT and stage-2
translations are setup to protect this memory. However, the
FVP escape mechanism bypasses the SMMU in the FVP. Our
second step addresses this issue. The FVP’s CPU cores are
connected to a SMMU engine that is driven by a stub. The
stub can generate test traffic. So we record PCIe transactions
on a real host-device setup and replay it to generate traffic
plugged to the SMMU via the stub. This ensures that we
trigger the SMMU for all device-related operations.

With this, one problem still remains. In the FVP, the SMMU

is not RME-DA compliant. So, its GPC does not allow access
to realm memory where ACAI creates the protected region.
Because we cannot change the FVP, we remedy this issue by
using two GPTs—one for the cores (GPCc) and one for the
SMMU (GPCd)—to emulate the RME-DA functionality. The
first GPCc marks the protected memory as realm world for all
cores. This way, only cores executing in realm mode (realm
VMs and RMM) can access this region. We use this GPT
for all CPU cores. On the other hand, the accelerator cannot
access the shared memory if the GPT marks it as realm world.
To address this, we create a second GPT (GPCd) where the
shared memory is marked as normal world. We then assign
this GPT to the SMMU, thus enabling it to access the shared
region. Whenever the monitor makes changes to the core GPT,
we update the SMMU’s GPT to ensure that the accelerator
does not have access to any protected or realm memory that
the core cannot access. We change the TF-A stage-2 and stage-
3 boot loaders to create the additional GPCd. Our accelerators
and host are not PCIe-5 enabled, so we fall back to PCIe-4
and do not include one-time IDE setup cost.
Arm Board. The FVP is instruction-accurate, i.e., it reports
the exact number of instructions that an Arm core will exe-
cute to perform operations. However, it is not cycle-accurate,
i.e., we cannot use it to measure the wall-clock performance
of an out-of-order core operating at a certain frequency. So
while our instruction count measurements on the FVP are a
proxy metric to estimate performance, they cannot be used
to project real-time performance. Since there are no public
performance reports for Armv9 cores with RME enabled for
CCA, we cannot reliably predict the performance of any CCA
workloads. As a best effort, we measure the costs of specific
operations on a real Arm board with Cortex-A53 cores.We
optimistically assume that Arm cores for CCA will perform
close to traditional virtualization and calculate the projected
performance of our workloads, while accounting for opera-
tional frequencies and average instructions executed per cycle.
We do not claim that these performance numbers from the
FVP and the board reflect real Arm CCA CPUs.

10.2 Lifecycle Costs & ACAI Breakdown

System Boot and Realm Creation. During system boot,
ACAI adds a minimal overhead of 11.42% to delegate the
SMMU’s data structures to the root world as compared to Bv.
Note that this overhead is a one-time cost. The realm creation
operation is performed once per realm VM. The costs depend
on the VM size and the reserved device memory size. Most
init time is spent in transitioning pages from normal to realm
world. Compared to just creating realm VMs (Br), ACAI adds
5.34% overheads due to the additional RSI and SMC calls.
Deletion. ACAI does not add overhead for clean-up. The
realm memory footprint of ACAI is the same as the baseline
(Br). For releasing the device, the only overhead is to delete
the stream table entry for the SMMU (69 instructions). The

14

Ae
Ap
Ao

Br
Av
Bv

Figure 8: Overheads for FPGA benchmarks. We do not mea-
sure mem and cls stages for these benchmarks as they do not
perform dynamic memory allocations.

subsequent TLB flush in the SMMU is necessary for any
device deletion, even for the baseline. The cost of cleaning
the device state such that it can be allocated to another VM is
common across baselines, ACAI does not add any overheads.
Cost of Delegating SMMU Operations. Our monitor han-
dles SMMU operations as described in Section 7.1. ACAI
does not significantly change the memory footprint but sim-
ply moves it from normal world hypervisor to root world
monitor. Most noticeable is the monitor state to store realm
device IDs, which is 64 bits per realm device as shown in Fig-
ure 4. In Figure 7 and Figure 8, we see the effect of the SMC
calls on hypervisor performance when comparing unmodified
execution with the ACAI changes (Bv vs. Av). The effect of
adding and removing SMMU entries and stage-2 translation
pages on TLB flushes is common for all configurations.
Interface Calls & Context Switches. ACAI incurs RSIs
and SMCs necessary to setup and protect device memory
with GPTs and the SMMU as shown in Table 5 and Table 6.
They lead to expensive exception-level switches. On average,
we incur 103.8% and 62.2% more context switches when
compared to an unmodified execution in the realm world
(Br) for GPU and FPGA respectively. For GPU benchmarks
we observe a higher number of switches for two reasons.
First, the workloads perform several memory allocations. The
execution is longer, which incurs more timer interrupts for
scheduling the realm VM. Second, for large memory alloca-
tions, we observe a higher number of RSI calls. We report
that this is due to fragmentation—the hypervisor allocates
non-contiguous physical pages, which in the worst case, can
result in an RSI call per page to update the SMMU’s stage-
2 translation table. While we do not observe such extreme
cases, ACAI does not make any optimizations (e.g., contigu-
ous memory allocation in the hypervisor). If enabled, such

optimizations will reduce the number of RSIs. Consequently,
the overhead for FPGA benchmarks is smaller because they
allocate lesser memory. Table 5 and Table 6 summarize the
interface calls and context switches for Ap. For GPU bench-
marks with long-running task, a majority of RMI calls are
attributed to timer interrupts. With ACAI enabled, we see an
increase of 7.7% RMI calls compared to Br.
Effect on Normal World Execution. We compare the perfor-
mance of normal world execution that executes a (non-realm)
VM connected to a GPU, with and without ACAI changes (Bv
vs Av). Figure 7 shows that ACAI’s enforcement of SMMU
protection and additional GPT operations do not impact the
normal world performance. We report an average overhead
of 3.8% and 1.9% for GPU and FPGA benchmarks. Among
the GPU benchmarks, we see that hotspot incurs the highest
slowdown (11.8%) even though it does not transfer the most
amount of data as shown in Table 5. We note that this might
be because of how its memory is allocated.
Optimization. ACAIOPT (Ao) achieves an average speedup
of 26.05% and 3.1% compared to ACAI (Ap) for GPU and
FPGA respectively as shown in Figure 7 and Figure 8.
Costs on Arm Board. Frequent operations during a realm
VM’s execution, i.e., transitions to EL2 and EL3, are not ex-
pensive. Transitioning from kernel to hypervisor takes 0.89
µs, and from hypervisor to monitor takes 0.77 µs. ACAI re-
quires the hypervisor to use the ACAI interface to the monitor
to update the SMMU data structures and update the SMMU’s
configuration registers. We see that performing an SMC call
from the hypervisor and writing data to 1 page costs 2.33
µs as compared to 1.75 µs when directly performed in the
hypervisor. Similarly, calls to the monitor to perform memory-
mapped register writes require 0.60 µs instead of 0.13 µs to
write to the register directly in the hypervisor.
Prototype with an Additional GPT. To verify the functional
correctness of ACAI, we implement 2 GPTs in our prototype
as explained in Section 9.1. With this, the realm VM allocates
and frees device memory triggering changes to the device
GPT. As a workload, we run a bare-metal application in the
realm. We perform additional RMI and SMC calls for attach-
ing a device which incurs 100 million extra instructions. This
leads to 99.15% overhead for the realm VM boot. GPU work-
loads exhibit different numbers of device operations (between
11–9600) that cause one GPT change per operation. Addition-
ally, each GPT change only incurs 10 extra instructions. Note
that we report these measurements for completeness and the
GPT changes do not affect ACAI’s performance reported in
Section 10. We also measure the cost of the GPT operations
on our performance prototype as shown in Table 7.

10.3 Comparison to Encrypted Mode

FVP. We compare the impact of ACAI (Ap) with the en-
crypted mode (Ae) that uses a bounce-buffer design. On av-
erage, Ae requires 26.8× more instructions than Ap for GPU

15

Table 5: GPU Performance. Transfer size in MB. Interface calls, Context Switches & World Switches for Ap. RSI prot refers to
rsi_delegate_prot_mem calls. Rl: Realm, Rt: Root, and N: Normal world. Setup & Runtime costs: E% percentage of the total
execution for the stage, O% overheads of Ap to Bv. H to D and D to H refer to host to device transfers and vice-versa. Ap includes
CCA protection overheads not present in Bv. Negative overheads imply Ap is faster than Bv.

Interface
calls (103)

EL switches
from (103)

World switches
from (103) Setup (%) Runtime (%)

transfer
size # dma RSI

prot
RMI
calls EL0 EL1 EL2 EL3 Rl Rt N init memalloc close exec H to D D to H

E% O% E% O% E% O% E% O% E% O% E% O%

nn 0.5 0.2 0.1 0.1 0.2 0.2 0.5 0.2 0.1 0.2 0.1 72.0 411.2 0.3 3.8 1.0 2.4 2.4 9.7 15.5 54.2 8.9 63.1
gaussian 37.9 12.9 8.1 1.1 38.0 46.8 19.4 10.4 9.2 10.4 1.1 1.1 273.4 0.1 43.8 0.1 46.3 73.5 21.5 10.3 49.3 15.0 30.5
needle 38.8 10.2 5.0 0.3 3.4 8.6 11.1 5.7 4.4 4.0 2.7 5.1 295.1 0.1 28.4 0.1 45.4 20.1 21.2 49.1 52.8 25.5 31.3
pathfinder 19.3 5.0 2.9 0.1 0.2 3.1 6.3 3.2 1.8 5.4 0.1 9.6 428.1 0.1 -24.6 0.2 45.9 1.1 12.9 87.1 59.8 1.9 29.8
bfs 3.3 0.9 0.5 0.1 0.3 0.7 1.5 0.8 0.6 0.7 0.1 46.5 395.4 0.2 5.2 1.0 88.8 2.8 22.8 45.5 45.8 3.9 39.3
srad_v1 1.8 0.8 0.5 0.5 3.3 2.9 4.0 1.6 1.0 1.5 0.5 55.5 684.9 0.2 27.7 0.3 3.8 33.5 20.2 5.7 48.7 4.8 54.8
srad_v2 64.0 16.5 8.4 5.1 4.9 12.8 33.6 18.8 9.3 18.6 9.3 13.1 1279.7 0.3 41.4 0.1 4.8 0.3 33.7 36.8 29.6 49.4 71.0
backprop 71.0 18.3 9.3 0.4 0.3 9.7 19.8 10.1 5.2 14.7 0.4 3.2 280.4 0.1 -3.0 0.1 -0.4 49.8 47.7 20.7 36.0 26.1 71.5
hotspot 3.0 0.8 0.5 0.1 0.3 0.8 1.4 0.7 0.6 0.7 0.1 30.6 353.8 0.2 3.7 0.6 41.0 4.7 26.4 34.7 51.9 29.2 36.7

Table 6: FPGA Performance. Transfer size in KB. Interface calls, Context Switches, and World Switches for Ap. RSI prot refers
to rsi_delegate_prot_mem calls. Setup & Runtime costs: E% percentage of the total execution for the stage. O% overheads of Ap
to Bv. Ap includes CCA protection overheads not present in Bv.

Interface calls (100) EL switches from (100) World switches from (100) Setup & Runtime (%)

transfer
size # dma RSI

prot
RMI
calls EL0 EL1 EL2 EL3 Realm Root Normal init H to D exec D to H

E% O% E% O% E% O% E% O%

matmul5 0.3 11.0 11.0 2.9 23.0 34.3 29.1 15.3 12.6 13.3 5.1 50.4 12.5 21.4 16.0 19.2 14.2 9.0 15.0
matmul10 1.2 11.0 11.0 3.1 23.0 34.6 30.6 16.9 9.8 24.5 10.4 45.9 11.1 26.9 8.9 18.7 19.2 8.6 14.1
svd32 32.0 27.0 27.0 12.9 45.0 79.1 95.7 52.8 40.5 54.8 13.9 16.5 14.0 65.5 11.8 8.3 21.7 9.8 14.6
svd48 128.0 36.0 36.0 20.9 67.3 110.7 135.7 76.7 49.8 76.2 27.8 9.5 9.5 79.6 9.6 4.8 18.4 6.2 20.9

Table 7: Measurements for GPT operations on Arm Board in
cycles and % overhead. GPT Setup: creates two GPTs during
boot. GPT Delegate: delegate one granule.

CCA ACAI %

GPT Setup 84,672.0 102,247.0 20.8
GPT Delegate 8,516.0 8,574.5 0.7

benchmarks. Backprop which transfers the most amount of
data shows the highest slowdown of 47.8×. Similarly for
FPGA, SVD requires 3271.7× more instructions for Ae be-
cause the FPGA apps poll for completion. These data transfers
are small but frequent, incurring a high encryption overhead.
Estimates on Arm Board. Our FVP measurements use
an expensive software-based cryptographic implementation
in the realm VM for Ae. As a best-effort estimate we com-
pare the impact of Ae on a real Arm board with support for
hardware accelerated AES instruction set. We assume zero
costs for buffer management, SMMU setup in the Ae case,
and only account for the cost of encryption, decryption, and
data copies. We micro-benchmark a standard Arm encryp-
tion library and measure the performance for transferring a
4KB page with AES-GCM 256-bit block size. This allows
us to project the approximate overheads of Ae, based on the
total number of memory transfer operations required for each
benchmark. Similarly, we estimate the performance of Ap

Table 8: Encryption cost estimates for the Ae compared to Ap
on the board. The values reflect speedup (x) of Ap compared
to encryption measurements on the board and estimates from
Graviton [52] for Ae. Arm cores’ frequency is 1.2GHz.

nn gaussian needle pathfinder bfs

board (x) 17.26 16.20 16.94 16.79 16.97
graviton (x) 10.39 9.75 10.20 10.10 10.22

srad_v1 srad_v2 backprop hotspot

board (x) 16.45 19.3 16.93 16.69
graviton (x) 9.90 32.2 10.19 10.05

by calculating the cost of RSI calls invoked per memory al-
location and deallocation operation during the benchmark
execution. Despite the fast hardware encryption, we still ex-
pect a slowdown of 2 orders of magnitude (c.f. Table 8).
Estimates on Graviton. How does the performance of ACAI
compare to CPUs with native support for fast encryption?
To answer this question, we consider the setup from Gravi-
ton [52], where the host CPU is Intel SGX with AES-NI sup-
port to perform AES-CTR mode encryption on 256-bit blocks
and SHA-3 for integrity protection. Based on their evaluation,
we calculate the cost of host-side encryption for a 4KB page
and then apply that to our benchmarks. Table 8 summarizes
these calculations. When compared to Ae on the Arm board,
we see a reduction of 27.95% for Graviton. However, when

16

compared to Ap, Ae is still ≈ 2 orders of magnitude slower.
Note that, the performance of Ap depends on the number of
RSI calls which is a function of how many memory transfers
occur. Whereas the performance of Ae is impacted by the size
of each memory transfer.
Note. Due to limited space, we defer implementation details
and additional evaluation results to the extended version [51].

11 Related Work

CPU TEEs. Arm TrustZone provides secure world for sen-
sitive computation [3], Intel SGX enclaves isolate user-level
code [18], and AMD SEV protects confidential VMs [1]. Up-
coming TEEs, such as Intel TDX [31] and Arm CCA [5]
offer VM-level TEE abstractions. Similarly, Sanctum [19],
Keystone [38], and Penglai [23] support TEEs on RISC-V
platforms. These CPU-based TEEs do not support shared
memory primitives between enclaves. Recent works offer
memory sharing for RISC-V enclaves with PMP-based isola-
tion [23, 54]. Further, several prior works create CPU-level
TEEs using existing hardware mechanisms such as nested
page tables and TrustZone address space controller [13,17,27].
ACAI re-purposes the hardware-enforced access-control and
memory-sharing primitives to create a protected region acces-
sible to the realm VM and the device.
PCIe Device TEEs. Graviton makes hardware modifications
to support TEEs on GPUs [52] and Telekine makes them
side-channel resistant [29]. The same goal can be achieved on
other devices [21, 34, 56] and unmodified GPUs [33]. Nvidia
Hopper H100 supports confidential computing, where the
whole GPU can operate as a single isolated unit or can be
viewed as multiple mutually untrusted isolated units called
Multi-Instance GPUs (MIGs) [42]. The device TEE hardware
can perform line-rate encryption [42]. ACAI requires such
TEE-enabled devices to enforce it’s invariants.
Protecting Integrated Devices with CPU TEEs. Re-
cent works extend TEEs from CPUs to integrated devices
connected directly to the system bus. Strongbox extends
TrustZone-based isolation to integrated GPUs on Arm plat-
forms while removing the driver from the TCB [20]. Com-
posite enclaves leverages PMP on RISC-V to create shared
memory between enclaves and devices [49]. Cure builds on
RISC-V platforms and augments devices to expand the scope
of CPU isolation to devices via bus-level enforcement [11].
Similarly, CCA compliant integrated devices can connect to
realm VMs if the device-side GPCs enforce access control.
ACAI’s invariants are useful for these integrated devices, espe-
cially the SMMU protection and device binding. Addressing
challenges in integrated mode may be easier—there is no ded-
icated device memory and the CPU protects the host DRAM.
Future work can investigate the security and compatibility of
such devices using ACAI’s invariants.
TCB Reduction & Verification. ACAI does not aim to
reduce TCB; it trusts the monitor, RMM, device driver, run-

time, and guest kernel. Prior works remove the driver from
the TCB for secure device communication with Arm Trust-
Zone [20,26]. Shelter removes the RMM from the TCB by cre-
ating enclaves in the normal world instead of the realm world
in Arm CCA [55]. Samsung Islet, a Rust-based RMM, reduces
potential memory safety issues [47]. Further, the TrustZone
firmware has been subject to formal verification [24, 41]. For
Arm CCA, there are ongoing efforts to verify the RMM and
the CCA firmware [25, 40]. Future works can use similar
techniques to reduce ACAI’s TCB and formally verify it.
ACAI Takeways for Upcoming Platforms. Upcoming
IOPMP in RISC-V [37], PCIe-6 specification [45], its adop-
tion as Intel TDX-Connect and AMD SEV-TIO are promis-
ing directions to expand ACAI to other devices and CPU-
TEEs [2, 30, 42]. With these upcoming features, we hope that
ACAI serves as a guiding principle for future cloud deploy-
ments. ACAI invariants amend CCA’s security specification
to ensure that the CPU-side isolation extends to accelera-
tors. Future works can use the same principle, but adapt it to
specifics of the underlying isolation mechanisms: PMP and
IOPMP in RISC-V, secure EPTs and IOMMU on Intel, or
secure nested paging and IOMMU on AMD. Adapting ACAI
to these systems will require revisiting challenges such as
scalability and attestation, as well as compatibility with other
hypervisor, kernel, and driver implementations.

12 Conclusion

ACAI is the first system that demonstrates CCA-based confi-
dential VMs to directly use accelerators as a first-class abstrac-
tion. ACAI enforces strong isolation guarantees by extending
existing CCA mechanisms to achieve security.

Acknowledgement

We thank our shepherd and the anonymous reviewers for their
feedback; Ben Fiedler, Ian Boschung, and Karin Holzhauser
for fruitful discussions on Arm CCA; Valentin Ogier for
adding encryption kernel support for Rodinia benchmarks
and testing the QEMU support for Arm CCA.

References

[1] AMD. AMD SEV-SNP: Strengthening VM Isolation
with Integrity Protection and More, January 2020.

[2] AMD. AMD SEV-TIO: Trusted I/O for Secure En-
crypted Virtualization, March 2023.

[3] ARM. Learn the Architecture: TrustZone for AArch64-
v1.1.

[4] ARM. Arm Architecture Reference Manual for A-
profile architecture-DDI0487J.

17

https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/sev-tio-whitepaper.pdf
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/trustzone-in-the-processor
https://developer.arm.com/architectures/learn-the-architecture/trustzone-for-aarch64/trustzone-in-the-processor
https://developer.arm.com/documentation/ddi0487/ja
https://developer.arm.com/documentation/ddi0487/ja

[5] ARM. Introducing Arm Confidential Compute Archi-
tecture guide Version 3.0 .

[6] ARM. Realm Management Monitor specification (v1-
0EAC4).

[7] ARM. SMMU architecture (v3-F.a).

[8] Arm. Trusted Firmware-A Documentation (v2.9).

[9] Arm. Realm Management Monitor Documentation.

[10] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. CURE: A Security Ar-
chitecture with CUstomizable and Resilient Enclaves. In
USENIX Security Symposium, pages 1073–1090, 2021.

[11] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. CURE: A security ar-
chitecture with customizable and resilient enclaves. In
USENIX Security 21, 2021.

[12] Eric Boyd. Introducing GPT-4 in Azure OpenAI Ser-
vice.

[13] Ferdinand Brasser, David Gens, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. SANC-
TUARY: ARMing TrustZone with User-space Enclaves.
In NDSS, 2019.

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tar-
jan, Jeremy Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A Benchmark Suite for Heterogeneous Com-
puting. In IISWC, 2009.

[15] Stephen Checkoway and Hovav Shacham. Iago Attacks:
Why The System Call API Is a Bad Untrusted RPC
Interface. In ACM ASPLOS, 2013.

[16] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. Con-
trolled Data Races in Enclaves: Attacks and Detection.
USENIX Security, 2023.

[17] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis,
Pratap Subrahmanyam, Carl A. Waldspurger, Dan
Boneh, Jeffrey Dwoskin, and Dan R.K. Ports.
Overshadow: A Virtualization-Based Approach to
Retrofitting Protection in Commodity Operating
Systems. In ASPLOS, 2008.

[18] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptology ePrint Archive, 2016.

[19] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal Hardware Extensions for Strong Software
Isolation. In USENIX Security, 2016.

[20] Yunjie Deng, Chenxu Wang, Shunchang Yu, Shiqing
Liu, Zhenyu Ning, Kevin Leach, Jin Li, Shoumeng Yan,
Zhengyu He, Jiannong Cao, and Fengwei Zhang. Strong-
Box: A GPU TEE on Arm Endpoints. In ACM CCS,
2022.

[21] Aritra Dhar, Supraja Sridhara, Shweta Shinde, Srdjan
Capkun, and Renzo Andri. Empowering data centers
for next generation trusted computing, 2022.

[22] DMTF. Security Protocol and Data Model (SPDM)
Specification. Technical report, DMTF, 2020.

[23] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang
Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. Scalable
Memory Protection in the PENGLAI Enclave. In OSDI,
2021.

[24] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using Verification to
Disentangle Secure-Enclave Hardware from Software.
In SOSP, 2017.

[25] Anthony CJ Fox, Gareth Stockwell, Shale Xiong, Hanno
Becker, Dominic P Mulligan, Gustavo Petri, and Nathan
Chong. A Verification Methodology for the Arm® Con-
fidential Computing Architecture: From a Secure Spec-
ification to Safe Implementations. In ACM OOPSLA,
2023.

[26] Liwei Guo and Felix Xiaozhu Lin. Minimum Viable
Device Drivers for ARM Trustzone. In ACM EuroSys,
2022.

[27] Owen S. Hofmann, Sangman Kim, Alan M. Dunn,
Michael Z. Lee, and Emmett Witchel. InkTag: Secure
Applications on an Untrusted Operating System. In
ACM ASPLOS, 2013.

[28] Huawei. Huawei_CCA_QEMU, accessed 2023-09-14.

[29] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J Rossbach, and Emmett Witchel.
Telekine: Secure Computing with Cloud GPUs. In NSDI,
2020.

[30] Intel. Intel TDX Connect Architecture Specification
(v773614).

[31] Intel. Intel Trust Domain Extensions (Intel TDX)
(v672623).

[32] Intel. PCI Express Device Security Enhancements
(v0.17), 2018.

[33] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethu-
madhavan, and Jaehyuk Huh. Heterogeneous isolated
execution for commodity gpus. In ACM ASPLOS, 2019.

18

https://developer.arm.com/documentation/den0125/0300/?lang=en
https://developer.arm.com/documentation/den0125/0300/?lang=en
https://developer.arm.com/documentation/den0137/1-0eac4
https://developer.arm.com/documentation/den0137/1-0eac4
https://developer.arm.com/documentation/ihi0070/fa/?lang=en
https://trustedfirmware-a.readthedocs.io/en/v2.9/
https://www.trustedfirmware.org/projects/tf-rmm/
https://azure.microsoft.com/en-us/blog/introducing-gpt4-in-azure-openai-service/
https://azure.microsoft.com/en-us/blog/introducing-gpt4-in-azure-openai-service/
https://github.com/Huawei/Huawei_CCA_QEMU
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/pcie-device-security-enhancements.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/pcie-device-security-enhancements.pdf

[34] Luyi Kang, Yuqi Xue, Weiwei Jia, Xiaohao Wang, Jon-
gryool Kim, Changhwan Youn, Myeong Joon Kang,
Hyung Jin Lim, Bruce Jacob, and Jian Huang. Ice-
Clave: A Trusted Execution Environment for In-Storage
Computing. In IEEE/ACM MICRO, 2021.

[35] Shinpei Kato. gdev-bench: Rodinia benchmarks.

[36] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and
Scott Brandt. Gdev: First-Class GPU Resource Man-
agement in the Operating System. In USENIX ATC,
2012.

[37] Shan-Chyun Ku. What’s in RISC-V IOPMP. RISC-V
Forum: Security, 2021.

[38] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An Open Frame-
work for Architecting Trusted Execution Environments.
In EuroSys, 2020.

[39] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen,
and Haibing Guan. TwinVisor: Hardware-Isolated Con-
fidential Virtual Machines for ARM. In ACM SOSP,
2021.

[40] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. De-
sign and Verification of the Arm Confidential Compute
Architecture. In USENIX OSDI, 2022.

[41] Luke Nelson, James Bornholt, Ronghui Gu, Andrew
Baumann, Emina Torlak, and Xi Wang. Scaling Sym-
bolic Evaluation for Automated Verification of Systems
Code with Serval. In ACM SOSP, 2019.

[42] Nvidia. Confidential Compute on NVIDIA Hopper
H100 (v1.0).

[43] Nvidia. NVIDIA Multi-Instance GPU User Guide ::
Nvidia Tesla Documentation, August 2023.

[44] Synopsys Home Page. Protecting Data over PCIe &
CXL in Cloud Computing, 2023.

[45] PCI-SIG. PCI Express 6.0 Specification.

[46] PCI-SIG. Integrity and Data Encryption (IDE), 2020.

[47] Samsung. ISLET, accessed 2023-05-04.

[48] Moritz Schneider, Aritra Dhar, Ivan Puddu, Kari Kos-
tiainen, and Srdjan Capkun. Composite enclaves: To-
wards disaggregated trusted execution. arXiv preprint
arXiv:2010.10416, 2020.

[49] Moritz Schneider, Aritra Dhar, Ivan Puddu, Kari Kos-
tiainen, and Srdjan Capkun. Composite Enclaves: To-
wards Disaggregated Trusted Execution. CHES, 2022.

[50] Craig S. Smith. What Large Models Cost You – There
Is No Free AI Lunch.

[51] Supraja Sridhara, Andrin Bertschi, Benedict Schlüter,
Mark Kuhne, Fabio Aliberti, and Shweta Shinde. ACAI:
Protecting Accelerator Execution with Arm Confidential
Computing Architecture. In arXiv, Oct. 2023.

[52] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted Execution Environments on GPUs. In
USENIX OSDI, 2018.

[53] Xiangyi Xu, Wenhao Wang, Yongzheng Wu, Zhennan
Min, Zixuan Pang, and Yier Jin. virtCCA: Virtualized
Arm Confidential Compute Architecture with TrustZone.
In arXiv, 2023.

[54] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carl-
son, and Prateek Saxena. Elasticlave: An Efficient Mem-
ory Model for Enclaves. In USENIX Security, 2022.

[55] Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei
Zhang, Xiapu Luo, Haoyang Huang, Shoumeng Yan,
and Zhengyu He. SHELTER: Extending Arm CCA with
Isolation in User Space. In USENIX Security, 2023.

[56] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. ShEF:
Shielded Enclaves for Cloud FPGAs. In ACM ASPLOS,
2022.

19

 https://github.com/shinpei0208/gdev-bench/tree/master/rodinia/cuda
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.synopsys.com/designware-ip/technical-bulletin/security-ide-ip.html
https://www.synopsys.com/designware-ip/technical-bulletin/security-ide-ip.html
https://pcisig.com/pci-express-6.0-specification
https://members.pcisig.com/wg/PCI-SIG/document/16599
https://github.com/Samsung/islet
https://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch/
https://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch/

	Introduction
	Confidential Acceleration
	Background: Isolation in Arm CCA
	Security Challenges
	Our Approach
	Acai Isolation Principle
	Creating Protected Memory Regions
	Identity and Exclusive Ownership

	Accelerator Lifecycle
	Memory Isolation
	SMMU Changes and Secure Setup
	MMIO and DMA

	Security Analysis
	Implementation
	Putting it together
	Performance Evaluation Prototype

	Evaluation
	Experimental Setup
	Lifecycle Costs & Acai Breakdown
	Comparison to Encrypted Mode

	Related Work
	Conclusion

