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Abstract—User programs recover from hardware exceptions
and respond to signals by executing custom handlers that they
register specifically for such events. We present SIGY attack,
which abuses this programming model on Intel SGX to break the
confidentiality and integrity guarantees of enclaves. SIGY uses the
untrusted OS to deliver fake hardware events and injects fake
signals in an enclave at any point. Such unintended execution
of benign program-defined handlers in an enclave corrupts its
state and violates execution integrity. 7 runtimes and library
OSes (OpenEnclave, Gramine, Scone, Asylo, Teaclave, Occlum,
EnclaveOS) are vulnerable to SIGY. 8 languages supported in
Intel SGX have programming constructs that are vulnerable to
SIGY. We use SIGY to demonstrate 4 proof of concept exploits
on webservers (Nginx, Node.js) to leak secrets and data analytics
workloads in different languages (C and Java) to break execution
integrity.

I. INTRODUCTION

User programs rely on exceptions and signals to manage
unexpected events or errors that may occur during execution.
Programming languages allow developers to express event and
error-specific logic in the form of handlers, such that when
the program is notified of a particular event, the handler is
executed automatically. These rich abstractions are facilitated
by the cooperation of the hardware and the operating system
(OS). When the hardware encounters runtime errors during
the program execution (e.g., page faults, segmentation faults,
timers, divide by zero), it notifies the OS via interrupts. The
OS either handles the faults itself (e.g., load the page into
memory) or forwards it to the user program’s signal handler
(e.g., DivideByZeroException). The program can also request
the OS for notifications about events of its interest that either
emanate from the system (e.g., Ctrl+C) or other processes on
the system (e.g., synchronization between parent and child
processes) and register handlers that should execute on such
events [19]. Thus, the OS not only monitors for such events
on behalf of the application and notifies it, but also diverts
the control of the application to the event handlers in the
program. Both these mechanisms facilitate rich functionality in
the programs, while the hardware and the OS provide efficient
notification and handler invocation.

Intel SGX provides a user-level abstraction called enclaves
that protects sensitive data and code execution [40], [33].
The hardware protects enclave confidentiality and integrity
even when the OS and other user processes are compromised.
With such a strong threat model, Intel SGX limits the attack
surface to the critical code running in an enclave. Since the
enclave memory is rendered inaccessible to the OS, traditional
programs that were written with the assumption of a trusted
OS simply cannot execute inside enclaves (e.g., syscall
instruction is illegal inside an enclave).

Due to its unique programming model, existing programs
do not execute out of the box on Intel SGX [27], [8], [9],
[17], [53], [18], [11], [35], [12], [3], [20], [10], [23], [13]. As
a solution, programmers can use SGX runtimes that provide a
small trusted runtime that interfaces with the SGX hardware
to expose a new high-level interface to the programmer.
Alternatively, programmers can use a trusted library OS inside
an enclave that can execute unmodified applications that were
not programmed for enclaves. Runtimes and Library OSes for
Intel SGX support exception and signal delivery to enclaves
since it is a much-required feature for programs. The hardware
or the OS can inform the enclave about an exception or a
signal by inducing an asynchronous exit. The enclave safely
stores its current execution state and exits to untrusted code.
The enclave can then be re-entered from another fixed entry
point to execute corresponding pre-registered handlers for the
exceptions or signals. During this flow, the hardware and
the trusted software ensure that the OS cannot subvert the
execution of the enclave—it executes the handler and then
resumes the execution at the point where it was interrupted.
This mechanism allows enclaves to handle runtime events even
when the OS is untrusted.

Heckler and WeSee introduce a new class of attacks
called Ahoi attacks where an attacker uses notifications to
compromise Confidential VMs (CVMs) enabled by Intel TDX
and AMD SEV-SNP [52], [51]. Ahoi attacks use interrupts
under the control of a malicious hypervisor that can trigger
interrupt handlers in the CVMs. These interrupt handlers alter
the global execution state of the CVMs and compromise them.
In light of these findings, we revisit Intel SGX and analyze if
an attacker can use notifications to compromise the security of
enclaves. We investigate two lines of inquiry: (i) what events
can the OS fake to trigger handler execution inside the enclave?
and (ii) can such handler execution bring about direct changes
to the enclave’s global execution state (e.g., variables)?

In this paper, we introduce a new attack called SIGY where
the OS compromises the enclave execution by inducing fake
events and signals to execute benign handlers registered by the
enclave. Intuitively, enclaves want to recover from a divide-by-
zero and expect signals from another enclave. To handle such
events, enclaves will register handlers that explicitly update
the enclave state, say by changing the denominator to a non-
zero value or invoking an event handler to respond to another
enclave’s request. If the OS convincingly tricks the enclave
into falsely believing that such an event occurred, the enclave
will stop its current execution and execute the handler that
will explicitly update the enclave state (e.g., change a variable
to a non-zero value or execute a function). In the least, this
will result in corruption of the enclave’s state resulting in a
crash. If the OS injects the event at an opportune moment, it
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can use the effects of the handler to compromise the enclave.
We demonstrate this phenomenon by introducing a new attack
called SIGY, which exploits the OS’s ability to fake signals to
execute enclave handlers and subvert SGX guarantees.

We show that existing runtimes, library OSes, and pro-
gramming language constructs are vulnerable to SIGY. We
first analyze existing support to execute SGX applications: 8
runtimes (Intel SGX SDK, Open Enclave, Teaclave SGX-SDK,
Asylo, Rust EDP, GoTEE, Enarx, and EGo) and 6 library
OSes (Gramine, Scone, EnclaveOS, EdgelessRT, MystikOS,
and Occlum). Then, we analyze the signal delivery mechanism
and handlers for programs written in 9 languages (C, C++,
Java, Python, Go, JavaScript, Rust, Julia and Wasm) to observe
their behavior in enclaves. We find that 3/8 runtimes (Open
Enclave, Teaclave SGX-SDK, and Asylo) and 4/6 library OSes
(Gramine, Scone, EnclaveOS, and Occlum) are susceptible to
SIGY because they do not detect the fake signals injected
by the OS. Of the 9 languages we study, 8 (C, C++, Java,
Python, Go, JavaScript, Rust, and Julia) offer language con-
structs for programs to register custom handlers. We hand-code
applications in each of these languages to register handlers
and execute them in vulnerable SGX runtimes and library
OSes to confirm that they are indeed vulnerable to SIGY.
Next, we demonstrate that SIGY breaks the confidentiality
and integrity of 4 open-source applications (Nginx, Node.js,
machine learning) that have been ported to Intel SGX by prior
works. Our proof of concept exploits on these enclaves leak
secrets and change outputs. Depending on the victim enclave,
SIGY may require injecting signals at a particular window of
execution. We construct a proof of concept exploit against a
worst-case application, a multi-layer perceptron, that requires
186 billion injections to bias the output.

Our proposed software defenses serve as point-wise so-
lutions against SIGY. The vulnerable runtimes and library
OSes have to make a design choice between either disabling
functionality for security or leaving the onus on the developer
to reason about the security. While the latter can be a pragmatic
solution, new attacks like SIGY serve as an example that
programmers using runtimes and library OSes for lift-and-shift
should not be burdened with this decision. We conclude that
some programs simply cannot be protected without limiting
functionality. Our conclusion encourages runtime and library
OS maintainers to disable vulnerable exception and signal
delivery interfaces. Our detailed analysis of existing enclave
ecosystems spanning from runtimes, library OSes, program-
ming language support, and existing enclave-bound applica-
tions provides an in-depth exploration to help future lift-and-
shift solutions in making judicious choices. In summary, SIGY
brings attention to a new attack surface that requires a re-
examination of the enclave ecosystem.

Contributions. The paper makes three main contributions:

1) SIGY Attack. We present a novel attack on Intel SGX
where a malicious OS can send fake signals enclave
and trick them into executing enclave-registered han-
dlers that change the enclave state.

2) Analysis. Of the 14 popular frameworks for running
applications in Intel SGX, 7 are vulnerable to SIGY
because they forward fake signals to the enclave
whereas 8/9 popular languages used for enclave pro-
gramming support custom handlers.

int old_mean;
int mean, n;
void add(int data){
try{
old_mean = mean;
//this can cause overflow
mean = addExact(old_mean,data)/n;
n += 1;

}catch(ArithmeticException e){
mean = old_mean;

}
} 

add(10)
add(20)
add(30)

old_mean=0
mean=0
n=0

before
execution 

execute

after

old_mean=15
mean=20
n=3

normal execution

attack execution

old_mean=0
mean=0
n=0

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

Fig. 1. SIGY on Java applications. Attacker injects sigfpe 3 times to
change the execution and data integrity.

3) Exploits. We build exploits on 4 open-source enclave
applications to demonstrate SIGY.

Responsible Disclosure. As per the responsible disclosure
guidelines, we have informed all the 7 impacted runtimes and
library OSes. We are coordinating patching with the maintain-
ers and will update the paper once the process concludes.

II. SIGY OVERVIEW

For functionality, applications register custom exception
and signal handlers that alter the global state of the pro-
gram. To preserve this functionality on Intel SGX, runtimes
and library OSes provide mechanisms to send signals to
applications that execute in enclaves. SIGY tricks the benign
runtime and library OS signal handling mechanisms which
results in the enclave executing the handlers. Therefore, the
custom handlers in applications put together with the signal
propagation infrastructure of runtimes and library OSes render
the enclaves vulnerable to SIGY.

Threat Model. We trust the hardware in the Intel CPU package
and assume that it is free from bugs. The enclaves are launched
and attested according to the Intel SGX specification, and all
software that executes inside the enclave is assumed to be
bug-free. This includes the enclave application code, trusted
runtime, and library OSes. We assume that all software that
executes outside the enclave, including the OS, untrusted run-
time, and other processes are untrusted and can be malicious.

A. Motivating Examples

Faking hardware exceptions. Consider a Java function in
Figure 1 that executes in an enclave whose add function
(Line 3) is called 3 times with data as 10, 20, 30. The function
computes and stores the new mean on every invocation. Now,
consider a malicious operating system (OS) that wants to
compromise the data integrity of this enclave. In this example,
the attacker’s goal is to ensure that the application never
updates the mean, i.e., it remains 0 despite the 3 invocations of
add. Because this code executes in an enclave, the OS cannot
change the values in memory directly. However, observe that
this enclave catches and handles ArithmeticExceptions
to deal with bad data. The handler reverts the value of mean,
discarding the effects of the bad data. If the OS can trigger
this handler every time the add function is invoked, then the
mean will not be updated.
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The OS can use SIGY to achieve its goal. Specif-
ically, the Java runtime converts the signal for floating
point exceptions (sigfpe) that it gets from the OS to an
ArithmeticException. This exception is then caught and
handled by the enclave. Therefore, using SIGY the OS injects
sigfpe to the Java code in the enclave when it executes
Lines 4-9 in Figure 1. This will result in the enclave always
executing the exception handler. With 3 such signal injections,
the OS ensures that the mean does not change, thus breaking
integrity.

Faking user-defined signals. Several library OSes (e.g.,
Gramine, Scone) allow lifting and shifting unmodified appli-
cations like Nginx to execute in enclaves. Nginx is a web
server that is highly optimized to provide maximum uptime,
configured using a config file. Consider an unmodified
Nginx server that executes in an enclave to serve http
data with config in Listing 1. At a later point, an Nginx
administrator introduces authentication tokens (JSON Web
Tokens (jwt) [14]) in the config file ( Listing 2). To enable
the administrator to refresh the config file without down-
time, Nginx performs the configuration refresh on receiving
sighup. When the administrator sends sighup to the Nginx
process, the Nginx process reads the new config file and
starts using it.

Listing 1. Old config
1 ...
2 server {
3 listen 80;
4 location /products/ {
5 ...
6
7
8
9 }

10 }

Listing 2. New config
1 ...
2 server {
3 listen 80;
4 location /products/{
5 auth_jwt "API";
6 auth_jwt_type
7 encrypted
8 ...
9 }

10 }

Now, consider a malicious OS that aims to disable this
authentication mechanism in the Nginx server. To do this,
the OS should be able to force the server to use the old
configuration file without the authentication enabled. Library
OSes protect enclave files by encrypting them. Therefore, the
malicious OS cannot directly edit the config file. However,
the OS can capture the old config file as an encrypted blob
from the file-system before it is replaced by the administrator.
Then, once the Nginx configuration upgrade is complete, and
checked by the administrator, the OS writes the encrypted blob
back to replace the new config file. Note that, this is not
sufficient to trick the Nginx server into using the compromised
configuration without restarting the enclave. The OS’s goal
is to ensure that when users connect to the Nginx server,
they are served using the older configuration instead of the
configuration that the administrator upgraded and checked,
thus mounting a time-of-check time-of-use (TOCTOU) attack.
For this, the OS uses SIGY to force the Nginx server to use this
compromised configuration after the administrator checks that
the configuration reload was successful by injecting sighup
to the Nginx process.

B. SIGY Attacks on Real-world Enclaves

SIGY uses asynchronous signal injection to compromise
enclaves by triggering expressive signal handlers. This requires

ocall_handler(…):                   
tkill(signal, t2)

sig_handler(…):
ecall_sig(…)

sig_handler(…):
ecall(…)

trt

𝑛
0

os

1

urt

h/w
exception

2
3 sigfpe

ecall(…):
…//handle divz

4

enclave p1

divz_handler():…

5

os
4 signal

enclave p1
t1

ocall_raise
(signal, t2)2

3

send_signal
(signal, t2)

1

sig_handler():
...

ecall_sig(…):

5ocall ecall

…//handle sig

6

(a)

t1 t2

(b)

Fig. 2. SDK interfaces. (a) Handling hardware exceptions (b) Handling intra-
enclave signals.

a runtime or library OS that propagates hardware exceptions
and signals to the enclave application. Further, SIGY uses
handlers in the applications that perform computations that
alter the enclave’s global state. The enclave handlers depend on
programming language constructs used in the application (e.g.,
signal registration constructs, and signal handling constructs).
Therefore, we first evaluate 14 runtimes and library OSes and
check if they propagate signals to the enclaves (Section III
and Section IV). Next, we examine 9 programming languages
and systematically analyze the constructs they provide for
programs to register and execute custom signal handlers (Sec-
tion V-B). Finally, we use the insights from our runtime and
programming language analysis to demonstrate SIGY on 4
publicly available enclave applications (Section VI). We ex-
tract secrets to break confidentiality and change programming
execution to break integrity.

III. FAKING SIGNALS IN SDKS

Background: Sending signals to threads. SDKs are typically
used to execute a single process in an enclave. So, they may
not enable mechanisms for the enclave to send signals to other
processes. However, they do support multi-threading inside the
same enclave. For sending signals between threads, the OS
exposes the tkill system call. Along similar lines, some
SDKs add mechanisms to enable enclave threads to send
signals to each other. To support sending signals to other
threads, the SDKs add a new ocall interface to send a signal to
the target enclave thread via the OS (Steps 1-4 in Figure 2(b)).
When the OS sends the signal to the target enclave thread, the
untrusted runtime’s handler propagates it to the trusted runtime
using an ecall (Step 5) which in turn invokes the target thread’s
signal handler in the enclave.

A. Intel SGX SDK

The Intel SGX SDK allows enclaves to register handlers
for hardware exceptions (e.g., divide-by-zero, overflow) to
perform custom handling when hardware exceptions occur.
During normal operation, if the enclave executes an instruction
that triggers a hardware exception (Figure 2(a)), the SGX
hardware triggers an asynchronous exit. On an asynchronous
exit, the trusted hardware stores the current execution state of
the enclave into the protected state save area (SSA). Then,
it raises an exception that the untrusted OS traps on where
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the hardware stores information about the exit into the SSA
as shown in Listing 3. Crucially, in SGX 2, the hardware
stores information about the exit into the SSA as shown
in Listing 3. Note that, SGX 1 does not store this hardware
information [34].

Listing 3. Exit information stored in the SSA.
1 s t r u c t _exit_info_t {
2 uint32_t vector; // exception vector number
3 uint32_t exit_type; // HW or SW exceptions
4 uint32_t valid; // supported/unsupported
5 };

This includes the validity, type, and reason (i.e., exception vec-
tor) for the asynchronous exit. Enclave software can access this
information while untrusted software (e.g., untrusted runtime,
OS) cannot. The Intel SGX SDK’s trusted runtime uses the exit
information from the SSA to deduce the validity (see Line 1 in
Listing 4) and reason for any asynchronous exit (Line 4− 5).

Listing 4. Psuedocode of exception handling for Intel SGX SDK.
1 i f (ssa_gpr->exit_info.valid == 1) {
2 // info used to forward exception to enclave app
3 info->exception_valid = ssa_gpr->exit_info.valid
4 info->exception_vector = ssa_gpr->exit_info.vector;
5 info->exception_type = ssa_gpr->exit_info.exit_type;
6 ...
7 }

When a hardware exception causes an exit from the enclave
(Step 1 in Figure 2(a)), the trusted hardware saves the exit
information in the SSA and raises a hardware exception to
the OS (Step 2). The OS converts the hardware exception to
a signal.1 Then, it identifies the enclave process that caused
the exception and sends it a signal (Step 3). This signal is
caught and handled by the untrusted runtime of the Intel
SGX SDK. The signal handler converts the signal back to the
corresponding hardware exception. Then, it notifies the enclave
with the hardware exception information by performing an
enclave enter (Step 4).2

SGX 1. The trusted runtime uses the hardware exception vector
from the untrusted runtime to call the enclave application’s
exception handler. Therefore, SGX 1 enclaves that do not have
hardware support to store the exit information are vulnerable
to SIGY. Specifically, the OS can arbitrarily inject a signal to
the enclave to cause an asynchronous exit. Then, the untrusted
runtime enters the enclave with the hardware exception vector
corresponding to the signal. The exception handling in the
trusted runtime executes the enclave’s exception handler (Step
5) without any filtering. Therefore, an attacker can use SIGY
to asynchronously send signals to the enclave and trigger its
exception handlers.

SGX 2. Enclaves that execute in SGX 2 with the Intel SGX
SDK are not vulnerable to SIGY. In SGX 2, the trusted
runtime uses the exit information from the SSA to determine
the validity and exception vector when performing exception
handling. If the OS maliciously injects signals to the enclave,
it causes an invalid exit (i.e., the hardware stores 0 in Line
4 in Listing 3). When the trusted runtime checks the exit
information, the guard check on Line 1 of Listing 4 will fail.

1OS does not raise a signal for page faults. It simply resumes operation in
the untrusted runtime

2The trusted runtime implements 2-level exception handling for asyn-
chronous exits. We abstract this detail in our discussion.

EApp

exit_info
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signal

eenter
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eenter

signal

eenter
(sig)

(a) (b)
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EApp

exit_info
check
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signal
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1

2
2

1
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Fig. 3. (a) Intel SGX SDK (b) Open enclave (c) Asylo (d) Teaclave SGX-
SDK.

TABLE I. LIBRARY OS AND RUNTIME ANALYSIS FOR SIGY. ✓:
INTERFACE SUPPORTED ✗: INTERFACE NOT SUPPORTED ❈: CANNOT BE

ANALYZED AS THEY ARE CLOSED SOURCE.

Name Interfaces Can inject with SIGY

Type HW exception
interface

Other signal
interface

HW exception
signals

Process
signals

SDK

Intel SGX SDK [13] ✓ ✗ no no
Open Enclave [18] ✓ ✓ yes yes
Teaclave [23] ✓ ✓ yes yes
Asylo [3] ✓ ✓ yes yes
Rust EDP [20] ✗ ✗ no no

libos: 1-process
per enclave

Gramine [12] ✓ ✓ yes no
Scone [21] ❈ ❈ yes yes
EnclaveOS [11] ❈ ❈ yes yes
EdgelessRT [8] ✗ ✗ no no

libos: n-process
per enclave

Mystikos [17] ✗ ✓ no no
Occlum [53] ✓ ✓ yes yes

language
runtime

GoTEE [35] ✗ ✗ no no
Enarx [10] ✗ ✗ no no
EGo [9] ✗ ✗ no no

So the trusted runtime will discard the exception and will not
execute the handler in the enclave (see Figure 3(a)).

B. Open Enclave

Open Enclave is a widely used open-source SDK that
allows developers to write custom applications to execute in
SGX enclaves.

Filtering using exit information. To support exception han-
dling, Open Enclave allows applications to register handlers
for hardware exceptions. An instruction that raises a hardware
exception in the enclave causes an asynchronous exit and
traps into the OS. The OS and the untrusted runtime then
propagate this exception to the enclave’s trusted runtime. Open
Enclave’s exception handling uses the exit information that
the hardware stores in the SSA like in Listing 4. If the OS
attacks an enclave by maliciously injecting a signal, this will
cause an asynchronous exit from the enclave. However, the
hardware will indicate that this is an invalid exit in the exit
information stored in the SSA. When the trusted runtime
handles this exception, it will detect the attack and not execute
the exception handler (LHS of Figure 3(b)).

Supporting inter-thread signals. The hardware exception
interface allows applications to only register handlers for
hardware exception events. Open Enclave does not allow
enclaves to register handlers for other signals (e.g., sigusr1,
sighup) which limits the expressiveness of applications that
can execute with Open Enclave. To improve expressiveness,
Open Enclave introduces a separate mechanism to allow en-
clave threads to send signals to each other. This allows enclave
threads to explicitly enable signals from the host and register
signal handlers (Line 2 and Line 3 in Listing 5). With this, the
threads can send signals (Line 4) to other enclave threads that
are routed through the trusted runtime.
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Listing 5. Enable, register, and send a signal in Open Enclave.
1 ...
2 oe_add_vectored_exception_handler(false, sigusr_handle)
3 //enable signal
4 oe_sgx_td_register_host_signal(thread, SIGUSR1)
5 //do ocall
6 host_send_interrupt(target_thread, SIGUSR1)
7 ...

When one enclave thread wants to send a signal (e.g.,
sigusr1) to the target enclave thread, it invokes the trusted
runtime which performs an ocall (Step 2 in Figure 2(b)). In
the ocall context, the untrusted runtime raises a signal to the
target enclave thread using the tkill system call. When the
target enclave thread is resumed through eenter (Step 5
in Figure 2(b)), the trusted runtime calls the target enclave
thread’s signal handler (Step 6 in Figure 2(b)).

Attacking Open Enclave. When threads send signals to
each other, the hardware exit information cannot be used to
determine if the signals are legitimate. Specifically, the exit
information stored in the SSA is only useful to determine the
legitimacy of hardware exceptions and not explicit exits caused
by sending signals. Therefore, the enclave cannot validate if
the signal was legitimately raised by one of its threads or if it
was maliciously injected by untrusted software. We can use the
signal injection interface to compromise the security of Open
Enclave using SIGY. Concretely, untrusted software like the
OS can directly send signals to enclave threads. This causes
the untrusted runtime to enter the enclave with the signal.
Because the trusted runtime does not validate the source of
this signal, it will invoke the enclaves signal handler (RHS
of Figure 3). Therefore, an attacker can arbitrarily execute the
enclave’s signal handler using SIGY.

C. Teaclave SGX-SDK

Teaclave SGX-SDK (Teaclave for short) enables developers
to write programs in Rust and execute them in enclaves. It
is based on Intel SGX SDK and implements different Rust
libraries to ease enclave application development (i.e., standard
library functionality).

Hardware exceptions. For hardware exceptions, it relies on
the Intel SGX SDK’s exception handling mechanism. The
trusted runtime of Intel SGX SDK detects and discards all ma-
liciously injected exceptions by checking the exit information
in the SSA as discussed in Section III-A. Hence, this interface
cannot be used to compromise Teaclave enclaves using SIGY.

Signal support. Next, we analyze Teaclave’s support that
enables enclave threads to send signals to each other. Teaclave
includes wrappers for Rust signal libraries. This allows enclave
threads to register handlers and send signals to each other.
To enable this functionality, Teaclave introduces a new ocall
that its Rust library wrapper invokes as shown in Figure 4.
The ocall function in Teaclave’s untrusted runtime performs
sigaction and raise libc calls Teaclave also adds a public
ecall (t_signal_handler_ecall) to be invoked by the
untrusted runtime to forward signals from one enclave thread
to another.

During normal operation, an enclave thread can raise
a signal to another thread using Teaclave’s signal library.
This is translated into an ocall (u_raise_ocall) by the

EApp trt urt OS

register
(sigusr1,
handler) ocall_sigaction

(sigusr1)
sigaction
(sigusr1, 
urt_handler)

T2

T1 raise(T2,
sigusr1)

ocall_raise
(T2,sigusr1) tkill

(T2,sigusr1)

sigusr1
ecall_sig_handle
(T2, sigusr1)

urt_handler

T2
handler(…)

can be
maliciously
invoked

Fig. 4. T1 and T2 are threads of the same enclave process. Black: Normal
operation with ocall and ecall interfaces in Teaclave. Pink: Interfaces that can
be maliciously invoked for SIGY.

library which transfers control to Teaclave’s untrusted run-
time. The untrusted runtime sends a signal to the target
thread using tkill. When the OS sends the signal to the
target thread, Teaclave’s untrusted runtime invokes the ecall
(t_signal_handler_ecall) to handle the signal in the
enclave. The ecall implementation in Teaclave’s trusted run-
time then triggers the signal handler registered in the target
thread.

Attacking Teaclave. SIGY needs the ability to arbitrar-
ily inject signals that trigger the signal handler in the
enclave. To gain this capability, SIGY can abuse the
t_signal_handler_ecall interface. If an enclave reg-
isters signal handlers, SIGY can arbitrarily inject signals into
the untrusted runtime and trigger this ecall. Alternatively,
because the untrusted runtime is attacker-controlled, SIGY
could directly invoke this ecall without the need for signal
injection. In both cases, the enclave application will always
execute the signal handler (Figure 4). Therefore, an attacker
can use SIGY to trigger computation in the enclave. Note that
the trusted runtime does not have any mechanism to distinguish
legitimate signals (e.g., from one enclave thread to another)
from those that are maliciously injected by the OS. Further,
the t_signal_handler_ecall is a public root ecall (i.e.,
invoked from any untrusted software) for functionality such
that it can be invoked by the untrusted runtime to forward
signals to the enclave. Therefore, Teaclave’s signal handling
design makes it vulnerable to SIGY (RHS in Figure 3(d)).

D. Asylo

Asylo is an open-source framework that provides a POSIX
interface to enable enclave application development. It im-
plements wrappers for POSIX functions that invoke ocalls to
interact with the untrusted OS. Asylo uses the Intel SGX SDK
and preserves the hardware exception handling interface from
the SGX SDK. This interface checks the exit information in
the SSA and discards maliciously injected exceptions. So, this
interface is not vulnerable to SIGY.

Signal support. Asylo introduces a new signal handling
mechanism to allow enclave applications to register and
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urt & os

p1

urt & os

libos

(a) (b) (c)

signal signal

p1
libos libos

p2

libos

p1 p2
signal

urt & os

Fig. 5. Signal propagation with library OSes. (a) OS or untrusted runtime
sends signal to enclave process. (b) One enclave process sends signal to
another enclave process through the untrusted runtime and OS. (c) LibOS
creates a process abstraction such that 2 processes run in the same enclave.
These processes can send signals to each other via the LibOS.

handle signals. In Asylo, this signal handling interface can
be used by the enclave application to register all POSIX
signals. To support signals, Asylo introduces a new ocall
(ocall_enc_untrusted_register_signal
_handler) to register a signal handler and an ecall
(ecall_deliver_signal) to propagate the signal from
the OS to the enclave. When the OS sends a signal, the un-
trusted runtime invokes the ecall and transfers the execution to
the enclave. The enclaves trusted runtime uses the signal from
the ecall’s parameters, looks up the corresponding handler that
was registered, and invokes it.

Attacking Asylo. The ecall used to deliver the signal to the
enclave is a public root ecall. Therefore, SIGY can use this
interface to attack enclaves in Asylo. Concretely, when the OS
sends a signal to the enclave, the untrusted runtime invokes the
ecall to enter the enclave’s trusted runtime (RHS Figure 3(c))
The trusted runtime executes the enclave’s signal handler
without any additional checks.

In summary, our analysis shows that all SDKs use the exit
information that the hardware stores to handle hardware ex-
ceptions. However, they introduce new mechanisms to support
signal handling between threads in the enclaves which render
3 out of the 4 SDKs vulnerable to SIGY.

IV. FAKING SIGNALS IN LIBRARY OSES

Background. Library OSes support rich exception handling
and signal interfaces for enclave applications. Unlike the
SDKs, they also implement mechanisms to execute multi-
process applications by adding support for calls like fork,
vfork, and execv. In some library OSes (e.g., Gramine,
Scone) calls to these functions spawn new enclave pro-
cesses Figure 5(b). Like the OS, the library OSes also add
support to send signals from one enclave process to another.
For this, they route the signals through the untrusted operating
system and runtime (Figure 5(b)). Other library OSes support
multi-processing, by implementing process abstractions inside
the enclave (e.g., Occlum). Such library OSes route inter-
process signals inside the enclave itself and do not have to
exit or use the untrusted runtime and OS to propagate signals
(Figure 5(c)).

A. Gramine

Gramine is an open-source library OS that enables execut-
ing unmodified multi-process applications in SGX enclaves. It
has 3 parts—a library OS, a Platform Adaptation Layer (PAL),

OS uPAL tPAL libOS
signal

signal:event

event

event:signal

event
eAPP

signal

sig_handler
hw exception

Fig. 6. Hardware exception and signal handling in Gramine.

and a patched C standard library. For simplicity, we refer to the
part of the PAL that runs outside the enclave as untrusted PAL
(uPAL) and the part that executes inside the enclave as (tPAL).
Figure 6 shows exception and signal handling in Gramine.

Gramine’s signal support. Crucially for SIGY, Gramine’s C
standard library allows support for signal handling in enclave
applications. Specifically, the wrappers for C’s sigaction
calls allow the application to register handlers for sig-
nals. When the enclave triggers a hardware exception,
the untrusted OS traps on it and raises a signal that is
caught by the uPAL. The uPAL’s signal handling function
(handle_sync_signal) converts the signal into a corre-
sponding Gramine-specific PAL event. For example, the uPAL
maps sigfpe to pal_event_arithmetic_error.
Then, it invokes tPAL using the sgx_raise (Figure 6) who
forwards the event to the library OS. The library OS converts
the event to a signal, creates the signal struct (siginfo_t)
like in Linux, and raises the signal to the enclave application.
This finally results in the enclave executing its signal handler.

Attacking Gramine. The trusted PAL does not check if the
event was raised because of a real hardware exception in
the enclave or by a signal injected by the untrusted OS,
thus making Gramine vulnerable to SIGY. Specifically, the
untrusted OS can inject a signal arbitrarily to a Gramine
application (see Figure 5(a)). This signal is converted to an
event in the uPAL and forwarded to the tPAL which eventually
executes the enclave application’s handler.

Although Gramine supports executing multi-process ap-
plications, it doesn’t explicitly enable support for enclave
processes to send signals to each other. Instead, its signal
handling mechanism has limited expressiveness and is built
to only support hardware exceptions (as shown in Table I).
Therefore, with SIGY we can only inject signals that map to
hardware exceptions to compromise enclaves that execute with
Gramine (c.f. Section V-A).

B. Scone and EnclaveOS

They are closed-source library OSes that support executing
unmodified applications in SGX based on Intel SGX SDK.
As we don’t have the source code, we perform a black-box
analysis of these library OSes. Specifically, we write a program
that registers handlers for all signals (c.f. Section V-A) and
observe which handlers are executed. For both Scone [27] and
EnclaveOS [11], our analysis shows that we can arbitrarily
inject most signals from the untrusted OS to the enclaves
(c.f. Section V-A). This successfully triggers signal handlers in
the enclave making them vulnerable to SIGY. Scone forwards
all signals from the OS to the enclaves. For EnclaveOS, our
analysis shows that sigusr2 is reserved for library OS-
specific operations, and enclave applications cannot register
signal handlers for these. Besides this, we observe that all other
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TABLE II. SIGNAL SUPPORT IN SDKS & LIBRARY OSES. ✓EXECUTES SIGNAL HANDLER, ✗ CRASHES THE ENCLAVE, ❈ NO OBSERVABLE BEHAVIOR.
(C.F. TABLE III FOR MAPPINGS FROM SIGNAL NUMBER TO SIGNAL NAME).

Runtime/LibOS 1 2 3 4* 5* 6 7* 8* 9 10 11* 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31*
Open Enclave ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ❈ ❈ ✗ ❈ ❈ ❈ ❈ ✗ ✗ ✗ ✗ ❈ ❈ ✗ ✗
Teaclave ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Asylo ✓ ✓ ✓ ❈ ✓ ✓ ❈ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❈ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❈ ✓ ✓
Gramine ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ❈ ❈ ✗ ❈ ✗ ❈ ❈ ✗ ❈ ❈ ❈ ❈ ✗ ✗ ✗ ✗ ❈ ✗ ✗ ✗
Scone ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
EnclaveOS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Occlum ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

signals from the OS execute enclave handlers. Because these
are closed-source we cannot comprehensively analyze their
behavior. We suspect that they allow all signals because they
introduce a new ecall which enables the OS to send signals to
the enclaves.

C. Occlum

Occlum is an open-source library OS that enables multi-
process applications by executing them in a single en-
clave [53]. As shown in Figure 5(c), Occlum operates under
the threat model of untrusted co-resident processes inside an
enclave [54]. It performs inter-process isolation using Intel
MPX for software-fault isolation. Crucially, it allows appli-
cation processes in the enclave to send signals to each other.
In this threat model that assumes untrusted processes inside
the enclave, SIGY can inject signals from one process to
another. For Occlum, we do not need the untrusted OS to inject
signals into the enclave. Instead, we can use malicious attacker-
controlled processes to send signals to the victim process in the
same enclave. The library OS in Occlum does not filter such
injections and simply forwards the signals from the attacker-
controlled process to the victim process. For completeness, we
checked if the OS can inject signals into the enclave to trigger
signal handlers. We report that while we can inject signals,
these signals do not result in the enclave executing its signal
handlers. Instead, the library OS invokes the kernel’s default
signal handling which always crashes the process.

D. Other Runtimes

Runtimes without signal support. Of the runtimes and library
OSes that we surveyed, the language runtimes GoTEE, EGo,
and Enarx are not vulnerable to SIGY because they do not
support signal handling [9], [35], [10]. Similarly, EdgelessRT
(a library OS) and RustEDP (an SDK) also do not support
signal handling in enclaves [8], [20]. Therefore, these also
cannot be attacked using SIGY.

Runtimes with limited signal support. MystikOS is a library
OS that allows multiple application processes to execute in
a single enclave process [17]. Similar to Occlum, MystikOS
implements mechanisms to allow application processes inside
the enclave to send signals to each other. All signals are routed
through the library OS and do not leave the enclave. Therefore,
it doesn’t expose interfaces for the untrusted software OS to
inject signals. Unlike Occlum, it assumes that processes in the
enclave mutually trust each other. So, while processes can send
signals to each other, this cannot be abused by an attacker to
compromise the enclave’s execution. Therefore, MystikOS is
not vulnerable to SIGY.

TABLE III. SIGNAL NUMBER TO SIGNAL NAME MAPPINGS. * SIGNALS
FROM HARDWARE EXCEPTIONS

# Name # Name

1 SIGHUP 2 SIGINT
3 SIGQUIT 4* SIGILL
5* SIGTRAP 6 SIGABRT/SIGIOT
7* SIGBUS 8* SIGFPE
9 SIGKILL 10 SIGUSR1
11* SIGSEGV 12 SIGUSR2
13 SIGPIPE 14 SIGALRM
15 SIGTERM 16 SIGSTKFLT
17 SIGCHLD 18 SIGCONT
19 SIGSTOP 20 SIGTSTP
21 SIGTTIN 22 SIGTTOU
23 SIGURG 24 SIGXCPU
25 SIGXFSZ 26 SIGVTALRM
27 SIGPROF 28 SIGWINCH
29 SIGIO 30 SIGPWR
31* SIGSYS/SIGUNUSED

V. WHICH SIGNALS CAN WE INJECT?

In Section III and Section IV, we discussed SDKs and
library OSes that are vulnerable to SIGY. Next, we systemati-
cally analyze each of the vulnerable SDKs and library OSes to
determine which signal handlers are potentially of interest to
the attacker. Then, we examine programming language support
for signals to determine if applications written in them might
be vulnerable to SIGY.

A. SDK and Library OS

To determine which signals are of interest to SIGY in
vulnerable SDKs and library OSes, we write test applications
that register handlers for all signals in the range 1-31. We
execute our test applications in each of the 7 vulnerable SDKs
and library OSes. Then, for each run of the test application
we inject a signal from the OS and check if the application:
(a) executes the registered handler, (b) crashes, or (c) has no
effect as shown in Table II.

Our findings. Our experiments show that when our test
applications invoke the rt_sigaction system call and try
to register handlers for sigkill and sigstp, the system
call fails and the application always crashes for all SDKs and
library OSes. This is because these signals are reserved by the
operating system for process management (e.g., sigkill is
used to force kill the process). Occlum and Scone allow han-
dlers for all other signals except sigkill and sigstp to be
registered and we report that their signal handlers are executed.
EnclaveOS reserves sigusr2 for library OS operations but
forwards all other signals except sigkill and sigstp to
the application and executes its registered handlers. Notably,
Teaclave does not allow injecting the signals that it expects to
get from hardware exceptions (sigill, sigtrap, sigbus,
sigfpe, and sigsegv) through the signal interface used
for inter-thread communication. In contrast, Gramine only
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TABLE IV. SIGNAL SUPPORT IN PROGRAMMING LANGUAGES. ✓EXECUTES SIGNAL HANDLER, ✗ CRASHES THE PROGRAM, ❈ NO OBSERVABLE
BEHAVIOR.

Language 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C++ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Java ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Python ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Go ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ❈ ✓ ✓ ✓ ✓
JS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Rust ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Wasm ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Julia ✗ ✓ ✗ ✗ ❈ ✗ ✗ ✓ ✗ ✓ ✗ ❈ ❈ ✗ ✗ ✗ ❈ ❈ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ❈ ✗ ✗ ✗

TABLE V. SIGNAL HANDLERS REGISTERED BY DEFAULT IN INTERPRETERS/COMPILERS. ✓HANDLER REGISTERED, ✗NO HANDLER REGISTERED.

Language 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
C ++ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Java ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Python ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Go ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
JS ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Rust ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Wasm ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Julia ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

TABLE VI. COMPILER/INTERPRETER VERSION.

Language Version
C gcc (GCC) 13.2.1
C++ gcc (GCC) 13.2.1
Java OpenJDK 17.0.10
Python Python 3.11.6
Go go 1.21.6
Node.js v21.6.1
Rust cargo 1.75.0
Wasm wasmtime-cli 17.0.0
Julia julia version 1.10.2

TABLE VII. IMPLICIT: RUNTIME CONVERTS SIGNALS INTO S/W
EXCEPTIONS. EXPLICIT: ALLOW PROCESSES TO REGISTER

SIGNAL-SPECIFIC HANDLERS.

Language Implicit Explicit Language Implicit Explicit
C ✗ ✓ Go ✗ ✓
C++ ✗ ✓ JS ✗ ✓
Java ✓ ✗ Rust ✗ ✓
Python ✗ ✓ Wasm ✗ ✗
Julia ✓ ✗

allows applications to use signals that map to a limited set
of hardware exceptions (e.g., sigill, sigbus, sigfpe,
and sigsegv). Openenclave only allows a small subset of
signals (sigill, sigbus, sigfpe, and sigsegv) to be
forwarded to the enclave through its signal handling interface.

B. Programming Languages

The SDKs and library OSes that we analyzed allow de-
velopers to execute programs written in different languages
in the enclaves. While some of them provide support for
specific languages (e.g., Teaclave is used to develop and run
Rust programs), others support a wide range of languages
(e.g., Scone supports executing programs written in C, C++,
Java, Python, Rust, Go, JavaScript).3 Therefore, we analyzed
9 popular programming languages (see Table VI) to check if
they allow applications to register and execute signal handlers.
To do this, we wrote programs in each of the languages to
register signal handlers for all signals from 1 to 31. We report
if the corresponding signal handlers were executed for each

3We analyze server-side JS, specifically Node.js

programming language in Table IV. The language and signal
pairs that execute the registered signal handlers are of specific
interest for SIGY. An attacker can use these signals to com-
promise applications written in the corresponding language.
For completeness, we also analyzed which signal handlers
the programming language standard libraries or interpreters
register by default i.e., when the program does not register any
signal. We report our findings in Table V. Our experiments
show that signal number 10 (sigusr1) and signal number 3
(sigquit) in Julia and Java respectively write debug logs to
stderr and stdout. In SIGY, stdout and stderr are
not accessible to the attacker and are therefore not interesting.
Further, Go starts profiling on signal 27 (sigprof), however
this does not lead to any changes in the program’s global
state. Interestingly, NodeJS starts a debug server on signal 10
(sigusr1). We exploit this behavior to demonstrate SIGY on
a NodeJS application in Section VI-B. Finally, we find that
all other signal handlers that programming language runtimes
register do not perform any computation that changes the
program’s global state and simply crash the application. These
handlers are therefore not interesting to SIGY.

Our findings. WebAssembly system interface (WASI), the
standard interface definition for WebAssembly, does not yet
support signals [24]. So, programs compiled to Wasm binaries
which use WASI cannot register or execute signal handlers.
For the other languages we broadly classify the signal support
into 2 categories: explicit and implicit support (Figure 7).
Programming languages that offer explicit signal support allow
applications to register signal handlers for specific signals
(e.g., using the signal(signum,handler) libc function)
which are executed when the OS sends a signal to the enclave.
Therefore, SIGY can asynchronously trigger these handlers
when enclave programs are written in these languages.

Languages which provide implicit support for signals (e.g.,
Java, Julia) register signal handlers directly with the OS. They
do not provide any constructs for the programs to register
signal-specific handlers. Instead, the language runtime converts
signals into software exceptions. These software exceptions
are caught and handled by the applications. For example,
Java converts sigfpe to ArithmeticException and
forwards it to the application. The application can execute
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Fig. 7. (a) Languages with implicit support for signals. The PL runtime
registers signal handlers with the OS and converts signals from the OS to
exceptions for the applications. (b) Languages with explicit support for signals.
The PL runtime allows the applications to directly register handlers with the
OS which are invoked when OS sends signals.

custom handling for the exception in its catch block (e.g.,
Line 9 in Figure 1). Similarly, Julia converts sigfpe to
DivideError which the application can catch and handle.
SIGY can trigger these catch blocks to change the execution
and data integrity of applications written in these programming
languages.

Go uses sigprof for internal CPU profiling and so
allows programs to register handlers for all other signals
except sigprof. All other languages that provide explicit
signal support, allow programs to register handlers for all
signals between 1-31 except 9 and 19 (i.e, sigkill and
sigstp). Note that, this is a direct consequence of the kernel
blocking all requests to register handlers for sigkill and
sigstp. On the other hand, Java only converts sigfpe
to ArithmeticException. Therefore, SIGY can only use
sigfpe to compromise programs written in Java.

In summary, of the 9 languages that we analyzed, we found
that 1 does not support any signal handling, 2 only supports
implicit signal handling, and the 6 others support explicit signal
handling. Programs written in any of the 8 languages that
provide signal support may be vulnerable to SIGY and should
be reanalyzed in light of our findings.

VI. CASE STUDIES

We confirmed our findings from Section III-Section V
using hand-coded enclaves. In this section, we first discuss
end-to-end case studies and explain how SIGY can be used to
compromise the security when executing in enclaves. Then, we
build a framework and demonstrate the feasibility of SIGY’s
signal injection architecture to show that it can be used to build
exploits that require a large number of signal injections.

A. Nginx

We surveyed widely used open-source webservers opti-
mized for high uptime and found that many of them use signals
to upgrade configuration without have to restart the serve.
Specifically, httpd and Nginx use sigusr1, and squid proxy
server uses sighup to upgrade the server’s configuration. We
choose to demonstrate SIGY on Nginx as it is ported by library
OSes (Gramine and Scone) to run in SGX enclaves.

By default, Nginx allows a system administrator to up-
grade its configuration and binaries using signals (sighup

C1,B1 C2,B1 C2,B2

sighup sigusr1

C1 C2

B1 B1 B2

C1

sighup

C1,B2

sigusr1

B2

C1,B1
nginx 
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nginx
binary

config

admin writes new file attacker replaces file

t0 t1 t2 t3 t4 t5 t7t6 t8

Fig. 8. Maliciously injecting signals to Nginx to trigger insecure states (pink).
C: Configuration, B: Binary.

and sigusr1) without degrading the uptime of the server.
For SIGY, this gives the attacker the ability to change the
configuration and binary of the server by injecting sighup
and sigusr1. Gramine, Scone, and EnclaveOS port Nginx
to run in SGX enclaves. Our analysis from Section V-A shows
that SIGY cannot inject sigusr1 into enclaves running with
Gramine. Further, the port of Nginx by EnclaveOS reduces
the functionality of Nginx and does not allow administrators
to refresh configuration files without restarting the server.
Therefore, we demonstrate SIGY on Nginx using Scone.

Benign Nginx configuration and binary upgrade. Con-
sider an Nginx webserver executing inside an enclave (t0 in
Figure 8). At time t1, the Nginx administrator replaces the
configuration file with an updated file and sends sighup to
the Nginx process. On receiving this, the Nginx process (at
time t2) reads the new configuration file and begins to use it.
Similarly, the administrator upgrades the binary of the server
by writing a new file and sending sigusr1 at time t3 which
is read and used by the server at t4. Note that, in an enclave
setting, the administrator encrypts the configuration and binary
files before writing them to the OS accessible file-system.
These files are only decrypted inside the enclave.

Attacking Nginx with SIGY. Because the administrator en-
crypts the configuration and binary files before writing them
into the file-system, the OS cannot directly manipulate them
to compromise Nginx. However, a malicious OS can record
the encrypted blobs of configuration and binary files when the
administrator writes them. The OS can also observe the new
configuration and binary files when the administrator sends the
signals to upgrade them in the enclave. Once the administrator
has finished the configuration and binary upgrade, the OS uses
SIGY to manipulate the state of the Nginx server.

Specifically, at t5, the OS replaces the new configuration
file with the old file it captured and sends malicious sighup to
the enclave. The enclave reads in this configuration and updates
the Nginx process (t6). This ensures that the Nginx process
uses an old configuration with a new binary. Furthermore, the
OS can also replace the new binary file with an old one that
it captured and send sigusr1 (t7). With this, the OS has
successfully used SIGY to restore the Nginx process to the state
that it was in at time t0 before the administrator performed the
upgrades. This exploit will undo any performance and security
improvements provided by the new binary and configuration
and can be used by the OS to bring back old security bugs (e.g.,
forcing the enclave to use an Nginx version before v1.23.2
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which patched critical issues [6]).

B. Node.js Server

Node.js is an open-source JavaScript runtime used for
server-side scripting. By default, a Node.js server starts a debug
web socket when it receives sigusr1, even if the server was
started without debugging enabled. To demonstrate SIGY, we
use Scone’s Node.js port that executes an HTTPs server in an
enclave. When the server is up and running, the malicious OS
sends sigusr1 to the Node.js server which opens a debug
web socket. Using this web socket, the attacker can leak the
server’s memory and inject arbitrary code. In our exploit, we
use the web socket to leak the RSA private keys used for
TLS by the server using 1 injection of sigusr1. Note that,
a malicious network adversary cannot do this exploit (e.g., by
sending a socket request for the debug socket to the Node.js
server).

C. Multi-Normal Distribution

We demonstrate SIGY on a Java application, inspired by
Heckler, to show how implicit signal support in program-
ming languages make applications vulnerable [52]. JSAT is
a statistical analysis tool for machine learning applications in
Java. JSAT implements a MultiVariateNormal class that
can be used to create a Multivariate Gaussian distribution.
The class implements a function that updates the mean and
covariance of the distribution using the setUsingData
function as shown in Listing 6. If data added to the dataset
causes an ArithmeticException, the setUsingData
function discards the data and reverts the mean to the original
value.

Listing 6. JSAT mean and covariance.
1 p u b l i c boolean setUsingData(List dataSet) {
2 Vec origMean = t h i s.mean;
3 t r y { //can overflow
4 Vec newMean = meanVector(dataSet);
5 Matrix covarianc = covarianceMatrix(newMean,dataSet);
6 t h i s.mean = newMean;
7 setCovariance(covarianc);
8 } catch(ArithmeticException ex) {
9 t h i s.mean = origMean;

10 }
11 }

As noted in Section V-A and Section V-B: (a) the Java runtime
converts sigfpe to ArithmeticException that can be caught
and handled by Java applications, and (b) Gramine forwards
sigfpe to the enclaves. Therefore, we use SIGY to trigger
expressive application logic in JSAT executing in Gramine
by injecting sigfpe. We use one of the tests in JSAT to
train a Learning Vector Quantization (LVQ) with Multivariate
Gaussian distribution as a local classifier. This setup calls the
setUsingData function during the training process of the
classifier. We use SIGY to inject sigfpe every time the
program executes lines 4 − 8 in Listing 6. In our attack,
we inject sigfpe 240 times and drop the error rate of
the classifier from nearly 0% to 66%. Our attack adds an
additional overhead of overhead of 3.4 seconds (3.34×) to
the training. Therefore, SIGY can be used to bias the classifier
and consequently any inference that a user might execute on
the model that it builds. We choose Java instead of Julia for
our case study because library OSes support running Java
applications in enclaves. However, if library OSes support Julia

TABLE VIII. EXPERIMENT SETUP.

Machine Intel CPU Cores RAM OS
(Ubuntu) Kernel SGX

SDK
SGX
Driver

Open
JDK

Laptop Core i7-10875H 8 32 GB 20.04 5.10.2 v2.16 2.11.0 17
Server Xeon Gold 6346 32 378 GB 20.04 5.19.0 v2.16 in-tree 17

execution, a similar attack would be possible on Julia’s text
analysis framework [52].

D. Multi-Layer Perceptron

To demonstrate the feasibility of SIGY when an application
requires a large number of signal injections we build a signal
injection framework with sgx-step and Gramine. To test the
robustness of our framework, we identify an application that
requires a large number of signal injections (on the order of
108). To start with, we used an open-source implementation
of a multi-layer perceptron written in C [16]. This library uses
tanh as an activation function which is called over 108 times
during the training process. Mathematically, tanh(x) tends to
1 when x tends to ∞. Pragmatically, this occurs in the tanh
function if the input overflows. To handle this, we introduce
a signal handler to the tanh function as shown in Listing 7.
We train the MLP model with 3 hidden layers and up to 6
units in each layer (tanh activation function in hidden layers,
sigmoid in output layer). Our training consists of 2000 epochs
and 1096 training samples from the Banknote data set [5].

Listing 7. Tanh activation function for MLP.
1 jmp_buf buf;
2 vo id sigfpe_handler( i n t signum)
3 longjmp(buf, 1);
4 vo id tanh( i n t input[...])
5 ...
6 f o r (i = 0; i < n; i++){
7 i f (sigsetjmp(buf, 1))
8 output[i+1] = 1; // on SIGFPE
9 else

10 output[i+1] = tanh(input[i]); // no overflow

Using SIGY, if we inject sigfpe when execution is in
between lines 8-10, it will trigger the signal handler and
set output[i+1] to 1 (Line 8). We inject sigfpe into
the tanh function 1, 8636 × 107 times during the training
of the neural network. Without SIGY, the training achieves
an accuracy of 97.09%. With SIGY, the accuracy drops to
59.27%. Further, SIGY adds 970 seconds (53.7×) overhead to
the training process. This large overhead is primarily because
of the asynchronous exits that sgx-step triggers and the signal
handling in the enclave on every execution of the tanh
function which the training invokes ≈ 108 times in total.

VII. PROOF OF CONCEPT EXPLOITS

We perform our experiments on machine setups as shown
in Table VIII. We set up the laptop with sgx-step compatible
configurations. The server has a newer kernel with an in-tree
driver. Both machines have hardware support to store exit
information in the SSA.

Sending Signals. We send signals to enclaves with the
util-linux program kill [15]. The utility program is a
wrapper around the kill syscall in Linux. The kill syscall
populates the siginfo_t struct to indicate that the signal
originated from user-space. Some of our experiments (e.g.,
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injecting to Java applications) require the struct to indicate
that the signal is the result of an integer division by zero error
(fpe_intdiv) or floating point overflow (fpe_fltovf).
To do this, we implement a kernel module that correctly
populates this information and sends it to the user-space
process. (98 LoC).

Nginx. Scone is closed-source and only supports running
Nginx servers in the paid versions. Therefore, to perform our
experiments we ported Nginx versions 1.22.1 and 1.24.0 to
execute in a Scone v5.8.0 enclave [27]. To do this, we remove
some system calls (e.g., fcntl) that Scone does not support.
Further, we adapted Nginx to correctly propagate Scone con-
figurations when spawning new processes (e.g., by invoking
the execve system call). Note that our modifications do not
change the functional behavior of Nginx. We build Nginx with
the select event method and a minimal configuration to
serve HTTP websites.

Node.js. We run a Node.js v10.14.1 web server (28 LoC)
with standard TLS libraries such as express and https using
Scone’s v5.8.0 publicly supported Node.js port and configura-
tion [22]. After sending sigusr1 to Node.js, we use Chrome
v120.0.6099.224 Developer tools to connect to the server,
dump its memory, and extract the RSA private key used for
TLS.

MLP and JSAT. To demonstrate SIGY on the MLP train-
ing (Section VI-D) we build a framework using sgx-step
v1.5.0 [58] and Gramine commit 211ec447e [12]. First,
as a preparatory step, we run the training of the model in
Gramine in debug mode, to identify the instruction pages of
the tanh function. To bias the training process, we must
inject sigfpe every time the tanh function is invoked.
When the tanh function starts executing, sgx-step generates
an asynchronous exit using timer interrupts and page faults.
We should inject sigfpe on this event but this is not
straightforward. On an asynchronous exit, control switches
form the enclave to Gramine’s uPAL. If we inject sigfpe
when uPAL is executing, Gramine will crash. First, we change
Gramine’s uPAL (with 212 LoC) to ignore our signals to
avoid it from crashing. Next, we use our framework to ensure
that we inject sigfpe only when the enclave has resumed
executing the tanh function. For this, we use 2 threads. The
main thread executes the enclave and handles the asynchronous
exit on each tanh invocation. Then, a worker thread injects
sigfpe to the enclave after it is resumed. Java applications
require more profiling than ahead-of-time compiled languages
(e.g., C). For simplicity, we perform our experiments on JSAT
by ensuring that our target function (Listing 6) waits for an
ArithmeticException on every invocation.

VIII. POTENTIAL DEFENSES

Current signal handling mechanisms render SDKs and
library OSes vulnerable to SIGY. We propose techniques to
potentially address the root cause of these issues. Then, we
consider orthogonal protection techniques that can be used to
diminish SIGY impact on a per-application basis.

A. Detecting Fake Signals

Hardware exceptions in SDKs. All the SDKs that we
analyzed implement a hardware exception handling interface

that checks the exit information before invoking application-
registered exception handlers as shown in Figure 2(a). Except
for Intel SGX SDK, all of them introduce additional mecha-
nisms to support enclave threads to send and receive signals.
This makes the SDKs vulnerable to SIGY (Figure 2(b)) and
should be hardened. First, they should not accept signals from
the OS that usually are a result of hardware exceptions (e.g.,
sigfpe, sigsegv) as these signals should be sent through
the hardware exception handling interface and never through
the signal handling interface for custom signals.

Protecting inter-thread signals in SDKs. To prevent SIGY,
the SDKs should introduce a mechanism to check if a signal
that a thread receives was in fact raised by an enclave thread.
For example, the trusted runtime can set up a protected
shared memory between the enclave threads. Then, to indicate
that a signal was raised by an enclave thread, the trusted
runtime can write the signal number and target threadID in
the shared memory region and only then exit the enclave
with an ocall. Further, when the untrusted runtime enters the
enclave with the signal (Step 5), the trusted runtime in the
target thread can look up the shared memory region to check
the legitimacy of the signal. This defense breaks functionality
of applications that require signal injection from outside the
enclave (e.g., upgrading Nginx configuration). If enclaves need
signals from outside that are not raised for hardware exceptions
for functionality, there is no mechanism to defend them against
SIGY.

Hardware exceptions in library OSes. Gramine only sup-
ports signals that are raised because of hardware exceptions
(c.f. Section IV-A). To stop SIGY, Gramine’s exception han-
dling can be enhanced to use the exit information that the
hardware stores in the SSA. Gramine has used this technique
in a patch which stops SIGY [2]. Unlike Gramine, other
library OSes support signals that are both raised because of
hardware exceptions (e.g., sigfpe) and explicitly by the
processes (e.g., sigusr1, sighup). Currently, library OSes
do not distinguish between signals from hardware exceptions
and signals that originate from within the application in the
enclave. First, their signal handling logic should be separated
for these two cases. Then, for the first case of hardware
exceptions, the library OSes can filter illegitimate injections
using the exit information stored by the hardware. Next,
we discuss mechanisms to protect against injections of other
signals that processes originate.

Interprocess-signals in library OSes. Our analysis in Sec-
tion IV shows that library OSes that create distinct enclaves
for application processes route the signal through the untrusted
runtime and OS which makes them susceptible to SIGY.
Protecting this interface is challenging as enclave processes
need a mechanism to check if the signal is from another trusted
enclave process. SGX does not support setting up shared mem-
ory regions between multiple enclave processes. Therefore, a
method similar to the one that we outlined for signals between
threads is not straightforward to implement between enclave
processes. To protect against SIGY, the library OSes should
implement a message passing framework to communicate the
signal information to the target trusted processes which their
library OS looks up to check the signal’s legitimacy.

Occlum is vulnerable to SIGY because it assumes a threat
model where untrusted processes reside within the same en-
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clave. While setting up a shared memory region to communi-
cate the legitimacy of signals between processes in Occlum is
easier, establishing the trust relationship between the processes
is more challenging. To this end, Occlum should introduce a
notion of attestation across process groups inside the same
enclave. Currently, all processes inside the enclave are mutu-
ally distrusting so this would be a fundamental architectural
change to Occlum. With the trusted process groups notion,
Occlum can use a message-passing mechanism to protect
against SIGY. Finally, library OSes should not accept signals
from untrusted software. If such signals that are not a result of
hardware exceptions are required for functionality then there
is no defense against SIGY.

B. Limiting SIGY Impact

SIGY relies on the fact that the signal is propagated to
the enclave application by the runtime or library OS. Once
the signal is sent to the application, it will execute the signal
handler in the enclave which compromises the enclave’s exe-
cution integrity. To amplify the effect of the signal handler, the
attacker might need other capabilities. For example, to com-
promise Nginx (Section VI-A), the attacker needs the ability
to replace encrypted blobs of files to change the configuration
or binary that the Nginx server uses. Similarly, for Node.js
(Section VI-B) the attacker needs to be able to connect to
the port. If there are orthogonal protections like file-system
rollback prevention, network firewalls, or dynamic attestation
in place, these end-to-end attacks will be stopped. Of the
library OSes we surveyed, only Gramine and Scone provide
protections for filesystems and network. Gramine has filesys-
tem protections to add trusted (i.e., hashed), and encrypted
files to the enclave, but does not provide rollback protection.
Scone paper does not discuss any port or protocol filtering in
network protection for enclaves; when filesystem protection
is enabled it ensures that the files are encrypted, rollback,
and integrity protected. Next, we checked publicly available
Scone versions—its network shields can be configured during
enclave creation with a whitelist of allowed ports. However,
this network shield is not activated by default allowing SIGY
to compromise Node.js. Thus, developers should consider the
new attack surface introduced by SIGY when configuring
enclaves. Lastly, orthogonal protections cannot stop SIGY
attacks which exploit sigfpe and compromise enclaves as
these attacks directly affect enclave memory and do not need
any external subsystem (e.g., network, files). Therefore, library
OSes should implement comprehensive defenses for this new
attack surface.

C. Detecting SIGY

SIGY injects signals into enclaves which cause asyn-
chronous exits. One way to protect an enclave against SIGY
is to detect if an asynchronous exit was caused by fake signal
injections. Intel introduced a hardware extension called AEX-
notify to perform checks on reentry after an interrupt or ex-
ception [4]. AEX-notify proposes a defense to prevent precise
single-stepping of enclaves using the new hardware [32]. For
this, they implement handlers for timer-interrupts that speed up
the execution of the successive instructions. AEX-notify cannot
mitigate SIGY when the applications register handlers that only
need to be invoked once (Section VI-B and Section VI-A)

to compromise the enclave. Specifically, the OS can send the
signal when the enclave has legitimately exited (e.g., timer
interrupt, page-fault) without AEX-notify detecting it. This is
because SIGY will not cause any asynchronous exits, let alone
require any single-stepping.

On the other hand, our attacks that need to send signals
when the enclave application is executing a specific set of
instructions can be harder, but not impossible, to perform in
the presence of AEX-notify. However, this does not com-
pletely stop SIGY. Note that, for SIGY the attacker does not
need to single-step the enclave. Instead, the attacker needs a
mechanism to determine when the enclave is executing a set
of instructions. Further, if the size of this instruction set is
larger than the number of instructions executed between timer
interrupts, there will always be a legitimate enclave exit for
the OS to then inject the signal. Then, when a genuine timer
interrupt occurs in between these instructions, the attacker can
inject the signal. For applications where this is not the case, the
frequency of timer interrupts is controlled by the untrusted OS.
Therefore, if needed, the attacker can tune the frequency to any
value to send signals to enclaves when the enclave executes
the target instruction set.

IX. RELATED WORK

Malicious Synchronous Interfaces. Ports et al. comprehen-
sively analyze the threats to applications from an untrusted
OS [48]. They perform this analysis in the context of Over-
shadow [29], a framework that protects the confidentiality and
integrity of applications in the presence of a malicious operat-
ing system and a trusted hypervisor. They note that because the
untrusted OS manages the signals it can maliciously alter them.
However, the analysis focuses on synchronous attacks from
the OS that redirect signals or send bad return values. Iago
builds on this, where the attacker synchronously manipulates
the return values for system calls when the enclave makes
explicit requests [28]. These bad return values can be used
to trick the enclave into performing unintended computations.
Iago demonstrates how the limited sanitization in the system
call interface between an enclave and OS can be used to syn-
chronously alter enclave execution. This synchronous interface
has been comprehensively studied and analyzed in the context
of SGX enclaves [39], [43], [56], [25].

Malicious Asynchronous Interfaces. Previous works have
demonstrated using asynchronous timer interrupts and page
faults at arbitrary points of the enclave’s execution [58]. The
attacker manipulates the software to trigger these hardware
events, which then trigger handlers that have fixed effects—
timer interrupts and page faults cause an exit from the enclave,
but do not execute any handlers in the enclave that change
the program state. In contrast, to the best of our knowledge,
SIGY is the first work on Intel SGX that injects signals and
exceptions asynchronously at any point during the enclave’s
execution. Depending on enclave-specific logic, such arbitrary
signal injection can induce varied effects depending on the
signal that is injected and the logic that the enclave has
specified for it. This allows SIGY to execute such signal
handlers at any point during enclave execution to bring about
programmatic changes to the enclave’s state.

Bugs in Enclave runtimes and Library OSes. Previous works
have studied and demonstrated attacks on buggy enclave-
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OS interface implementations (e.g., Application Binary Inter-
face, Application Programming Interface) [56], [43]. Async-
Shock and Game of Threads exploit synchronization bugs
in multi-threaded enclave applications by interrupting the
threads at specific points in their execution [62] or using race-
conditions [50]. Along similar lines, SmashEx demonstrates
attacks that use the lack of atomicity in signal handlers to
compromise enclave execution [34]. Unlike these previous
works, SIGY does not rely on bugs in the runtimes, library
OSes, or signal handlers.

Bugs in Enclave applications. Prior works have used vulner-
abilities in enclave application code to compromise it using
code-reuse attacks [44]. SIGY does not rely on bugs in enclave
application implementations. However, SIGY can be used to
bring back old bugs. For example, by forcing Nginx to use
old binaries, SIGY brings back vulnerabilities in older Nginx
versions.

Detection Tools. Several works have used fuzzing [31],
[42] and symbolic execution [25], [30], [43], [61] to detect
vulnerabilities in enclaves. Notably, SEnFuzzer uses fuzzing
to detect ocall and ecall interface bugs [65]. We manually
analyzed the runtimes and library OSes to find vulnerable
runtimes, library OSes, and signal handlers that SIGY can
exploit. These detection tools can be used to further analyze
applications with the intention of finding other effects of signal
handling in enclaves. Lefeuvre et al., investigate the fragility
of interfaces for software compartmentalization and build a
fuzzer to detect interface vulnerabilities but do not consider
signals [46]. Beyond Intel SGX, SIGY’s observations can be
applied to other such avenues of research.

Side-channels. Prior works have used timer interrupts and
page faults to leak side-channel information [60], [64], [38],
[49], [59]. Similarly, others have leveraged other side-channels
to compromise enclaves [36], [47]. Sgx-step is a framework
that enables attackers to precisely single-step enclaves [57].
While SIGY is not a side-channel attack, side-channel infor-
mation can be used to amplify the effects of SIGY.

Kernel bugs due to interrupts and signals. Buggy imple-
mentation of signal handlers in the kernel can compromise the
security of applications by inducing memory-corruption from
race conditions in the handlers [1]. ExpRace exploits kernel
races by using interrupts in a non-TEE setting [45]. Prior works
have analyzed the possibility of using buggy signal handlers
and interrupt remapping to corrupt applications executing with
trusted OSes [7], [63]. Signal handlers have been known to
have race condition bugs that can be exploited to compromise
applications [1]. SIGY does not assume any buggy or racy
signal handlers.

Malicious Interrupts. There are three ways of delivering
notifications to a user-level computation: interrupts, exceptions,
and signals. Since Intel TDX and AMD SEV offer a VM
abstraction, the attacker can only use interrupts as a notifi-
cation mechanism. Specifically, when the hypervisor delivers
an interrupt, the guest OS can either handle it in its kernel with
an interrupt handler or convert it to an exception or signal for
the user process currently executing on the vCPU. A recent
series of works dubbed Ahoi attacks, exploit CVMs provided
by AMD-SEV and Intel TDX by injecting malicious interrupts
from hypervisors [52], [51]. In particular, Heckler injects

interrupts which are then delivered as signals to the victim
user-level program. SIGY is inspired by Ahoi attacks, but
investigates Intel SGX which is a user-level abstraction. SIGY
shows that a malicious OS can deliver interrupts, exceptions,
and signals to an enclave. When a CPU executing an enclave
triggers a hardware interrupt (e.g., INT0 for divide by zero
faults), Intel SGX hardware sets the SSA to indicate that the
interrupt did indeed originate on the core. This way, the enclave
software can check the SSA before executing the handler.
Fortunately, our investigation shows that all current enclave
SDKs (Intel SGX SDK, Open Enclave, Teaclave SGX-SDK)
do indeed perform the interrupt authenticity check before
executing the handler. However, this covers only a fraction
of the attack surface. The OS can still deliver software-based
exceptions and signals directly to the enclave. Since these
notifications are not based on hardware-events (e.g., executing
an illegal instruction) triggered by the enclave, the CPU cannot
provide any information about their authenticity. Thus, SIGY is
an instance of Ahoi attack that uses exceptions and signals as
the notification mechanism to compromise Intel SGX enclaves.

SIGY on Arm TEEs. Besides SGX, several interface attacks
have been demonstrated on Arm TrustZone [41], [55]. Further,
prior works have used fuzzing to test TrustZone’s trusted
software [37]. Unlike SGX, TrustZone does not expose signal
interfaces to the malicious OS and filters interrupts from
the untrusted OS to the trusted applications [26]. Therefore
SIGY cannot be used to attack TrustZone. Heckler shows
that Arm CCA’s protected VMs are not vulnerable to attacks
using malicious interrupts because of Arm’s interrupt archi-
tecture [52]. Specifically, Arm’s interrupt architecture does not
map interrupts to exceptions. Therefore, a malicious hypervisor
cannot abuse interrupts to induce exceptions or trigger signal
handlers in Arm CCA’s VM. Furthermore, in Arm CCA’s
protected VM setting, the guest OS is trusted and the VM
does not accept exceptions and signals from the untrusted
hypervisor. Arm CCA is not vulnerable to SIGY.

X. CONCLUSION

SIGY demonstrates that a malicious OS can exploit Intel
SGX enclaves by delivering malicious exceptions and signals
to trick the enclave into executing handlers. Our analysis of
various runtimes and library OSes shows that they are vulner-
able to SIGY. Programming languages as well as native and
ported enclave-bound programs that need exceptions and signal
handling should consciously to choose between functionality
and security.
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[51] B. Schlüter, S. Sridhara, A. Bertschi, and S. Shinde, “WeSee: Using
Malicious #VC Interrupts to Break AMD SEV-SNP,” in IEEE S&P,
2024.

[52] B. Schlüter, S. Sridhara, M. Kuhne, A. Bertschi, and S. Shinde,
“Heckler: Breaking Confidential VMs with Malicious Interrupts,” in
USENIX Security, 2024.

[53] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and
S. Yan, “Occlum: Secure and efficient multitasking inside a single
enclave of intel sgx,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 955–970. [Online].
Available: https://doi.org/10.1145/3373376.3378469

[54] ——, “Occlum: Secure and efficient multitasking inside a single en-
clave of intel sgx,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 955–970.

[55] D. Suciu, S. McLaughlin, L. Simon, and R. Sion, “Horizontal
privilege escalation in trusted applications,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
20/presentation/suciu

[56] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
1741–1758. [Online]. Available: https://doi.org/10.1145/3319535.3363
206

[57] J. Van Bulck and F. Piessens, “Sgx-step: An open-source framework
for precise dissection and practical exploitation of intel sgx enclaves.”

[58] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” in Proceedings
of the 2nd Workshop on System Software for Trusted Execution,
ser. SysTEX’17. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/315270
1.3152706

[59] ——, “Nemesis: Studying microarchitectural timing leaks in
rudimentary cpu interrupt logic,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 178–195. [Online]. Available:
https://doi.org/10.1145/3243734.3243822

[60] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page {Table-Based}
attacks on enclaved execution,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1041–1056.

[61] Y. Wang, Z. Zhang, N. He, Z. Zhong, S. Guo, Q. Bao, D. Li,
Y. Guo, and X. Chen, “Symgx: Detecting cross-boundary pointer
vulnerabilities of sgx applications via static symbolic execution,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY, USA:

Association for Computing Machinery, 2023, p. 2710–2724. [Online].
Available: https://doi.org/10.1145/3576915.3623213

[62] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves,” in Computer
Security–ESORICS 2016: 21st European Symposium on Research in
Computer Security, Heraklion, Greece, September 26-30, 2016, Pro-
ceedings, Part I 21. Springer, 2016, pp. 440–457.

[63] R. Wojtczuk and J. Rutkowska, “Following the White Rabbit: Software
attacks against Intel (R) VT-d technology,” https://invisiblethingslab.c
om/resources/2011/Software\%20Attacks\%20on\%20Intel\%20VT
-d.pdf, 2011.

[64] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in IEEE S&P,
2015.

[65] D. Yu, J. Wang, H. Fang, Y. Fang, and Y. Zhang, “Senfuzzer: Detecting
sgx memory corruption via information feedback and tailored interface
analysis,” in Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, ser. RAID ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
485–498. [Online]. Available: https://doi.org/10.1145/3607199.3607215

15


